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Notation

Vector notation

Vectors will be written as a single column and will be denoted by bold lowercase characters.

We will also use the Matlab notation where a column vector is written on one line and a

semicolon is used to delimit the elements of the vector:

x E_ n Ix1/= : (0.1)

x_

= Ix1; ...; x_]. (0.2)

Row vectors will be written on one line and a comma will be used to delimit the elements

of the vector:

_,•_l×n *=_ _'=[Xl,..., xn]. (0.3)

A few special vectors, which will be defined explicitly, will be written with reversed indices:

• _t+x ¢==_ /3 = [ri; ... ; rio]. (0.4)

Matrix notation

Bold uppercase letters will be used to denote matrices, the corresponding lowercase letters

with subscripts ij will be used to denote the (i,j) entry:

all - • • aln I

A • ]_mx_ _ A = " " , aij • ]_. (0.5)

aml •.. amn

Columns of the matrix will be denoted by the vectors al, ..., an, and the rows will be

denoted by the row vectors a_, . . ., a m._The transpose of the matrix will be written as A T.



Symbols

oti

o_ij

A

Ao

Af

Ap

A1, A2

Hi
B

Bc

Bf

Bf., Bfy

Bp

B1, B2

C

Cf

Cp
c_, c2

Cl

Cij

D

Dry

d}

Vi

Dij

parity relation coefficients, Equations (2.23) and (2.54)

parity relation coefficients, Equations (2.36)

discrete-time state transition matrix, Equation (2.8)

continuous-time system matrix, Equation (2.5)

detection filter system matrix, Equation (7.3)

system matrix, Equation (7.1)

system matrices, Equations (7.19) and (7.21)

parity relation coefficients, Equations (2.18) and (2,58)

discrete-time input matrix, Equation (2.8)

continuous-time input matrix, Equation (2.5)

detection filter input matrix, Equation (7.3)

detection filter input matrices, Equation (7.14)

input matrix, Equation (7.1)

input matrices, Equations (7.19) and (7.21)

output matrix, Equation (2.9)

detection filter output matrix, Equation (7.15)

output matrix, Equation (7.2)

output matrices, Equations (7.19) and (7.21)

ith row of C

Equation (2.16)

Equation (2.32)

Equation (2.52)

feedforward matrix, Equation (2.9), detector gain, Equation (7.3)

detection filter feedforward matrix, Equation (7.15)

ith row of D

Equation (2.17)

Equation (2.33)

Equation (2.53)

error signal, Equation (7.4)
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J1, J2

L1, L2

ll, 12

ml (t), m2(t)

ml(_),-_2(t)

n(t)

nl(t),n2(t)

ni

nj

R

ri(k)

rji(k)

T_

_(t)

_i(k)

_(t)

_c(t)

.(_i)

u_(ni)

_(t)

_,(k)

_p(t)

_nl, Xn2

y(t)

y(k)

y_(k)

y(ni)

Yd ni )

_(t)

Equation (7.18)

Equation (7.16)

Equation (7.12)

arbitrary functions of time, Equation (7.12)

arbitrary functions of time, Equation (7.16)

arbitrary function of time, Equation (7.10)

arbitrary functions of time, Equation (7.18)

Equations (2.12), (2.28), (2.40)

Equation (2.28)

field of real numbers

ith SSPR or SAPR residual, Equations (2.21), (2.56)

ijth DSPR or DAPR residual, Equation (2.37)

jith DSPI_ or DAPR residual, Equation (2.38)

sampling period

continuous-time input vector, Equation (2.5)

discrete-time input vector, Equation (2.8)

ith element of u(k)

actual input vector, Equation (7.1)

commanded input vector, Equation (7.3)

Equations (2.15) and (2.41)

Equation (2.50)

continuous-time state vector, Equation (2.5)

discrete-time state vector, Equation (2.8)

state vector, Equation (7.1)

state vectors, Equations (7.19)and (7.21)

continuous-time measurement vector, Equation (2.6)

discrete-time measurement vector, Equation (2.9)

ith element of y(k)

Equation (2.40)

Equation (2.14)

detection filter state vector, Equation (7.3)
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Chapter 1

Introduction

The requirement that a control system must be tolerant to the failure of its components

and still perform safely and reliably puts stringent requirements on the reliability of the

components that are used. Often the requirements on the reliability are so strict that it can

only be achieved through some form of redundancy. An example is flexible space structures.

Due to their large sizes and lightweight construction they have very low damping so that

active control is necessary to do shape control and damp out vibrations throughout the

structure. Active control is also necessary to perform other tasks like stationkeeping and

attitude control. Systems in space must work for long unattended periods of time and

with long intervals between maintenance so that a control system must be able to perform

satisfactorily even when some of its components, especially the actuators and sensors, fail.

To ensure stability of the control system and continue the mission it is necessary to detect

the failure of a component. Once a failure has been detected and the failed component has

been identified, the control system must be reconfigured to isolate the faulty component

from the controller. Other examples of control systems that require very high reliability are

12



aircraft engines,nuclearreactors,andprocesscontrolsystems,to namebut afew.

To increasethereliability ofasystemsomeformof redundancyis usuallyused.l_edundancy

canbedividedinto two classes,hardwareredundancyandanalyticalredundancy.In hard-

wareredundancythe reliability is increasedby replicatingthe controlsystemcomponents.

A solutionthat is oftenappliedis to usethreeor moresensorsof the samekind to measure

the samevariable.A voting schemeis then employedto find the odd oneout. Hardware

redundancyhasthe advantagethat it is insensitiveto the magnitudeof the failureandcan

detectany type of discrepancy.Althoughhardwareredundancyis simpleto implement,it

is costlyandaddsunnecessaryweightto thesystem.Whenmanysensorsand actuatorsare

usedit becomesimpracticalto triplicate eachdevice.As an example,it is estimatedthat

a largeflexible spacestructurewill haveapproximately200 control systemcomponents.

Tripling somanycomponentsis impracticalandnot costeffective. Anotherway to increase

the reliability of a systemis throughanalytical redundancy. Here the redundancy present

in the model of the plant and input-output histories are used to detect and identify the

failure of a component.

The typical form of a failure detection and isolation (FDI) system is shown in Figure 1.1.

The FDI system is divided into two subsystems, the generation of residuals and decision

Measurement
Plant

ii ResidualGenerator

Residual Decision

Function

Failure
Decision

Figure 1.1: FDI block diagram.
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making, as shown in the figure. The Residual Generator uses the commanded inputs to the

plant, the measured outputs from the plant, and a model of the plant to generate a set of

residuMs. The generation of residuals has been studied for many years and surveys of these

methods can be found in Willsky [14], Basseville [1], and Merrm [12]. The Decision Function

analyzes the residuMs and based on this analysis makes a decision about the state of the

actuators and sensors. Typical examples of this anMysis are simple threshold detectors that

compare the magnitudes of the residuals with a set of thresholds and declaring a failure

when the amplitude exceeds the threshold. Other methods are moving average analysis and

statistical decision theory. In the latter case a priori probabilities of the failure modes are

hypothesized and it is possible to optimize for a specific mode of failure. It is not always

possible to enumerate all modes of failure and obtain the corresponding probabilities. It

is therefore desirable to have a methodology that does not require the specification of

the failure modes and corresponding probabilities of failure. Also, the method should be

applicable to both sensors and actuators. Only two methods satisfy the requirements set

forth, the Failure Detection Filter by Beard [2] (see also Jones [6] and Massoumnia [10]) and

the method of Generalized Parity Relations by Chow [4]. Because all analytical redundancy

methods use a model of the plant they are all sensitive to modelling errors. The design of

robust parity relations has been discussed by Lou et al. [8].

In this work we discuss the application of Generalized Parity Relations and the Failure De-

tection Filter to two experimental flexible space structures, the NASA Langley Mini-Mast

and Marshall Space Flight Center ACES mast. We concentrated on the generation of resid-

uals and made no attempt to implement the Decision Function. It should be clear from the

examples that are presented in later chapters whether it would be possible to detect the

failure of a specific component. The report is structured as follows. In Chapter 2 we derive

the equations for Generalized Parity Relations. Two special cases are treated: namely,

14



SingleSensorParity Relations(SSPR)and DoubleSensorParity Relations(DSPR).Gen-

eralizedParity Relationsfor actuatorsarealsoderived. Chapter3 describesthe NASA

Langley Mini-Mast and discusses the application of SSPR and DSPR to a set of displace-

ment sensors located at the tip of the Mini-Mast. The performance of a reduced order

model that includes the first five modes of the mast is compared to a set of parity relations

that was identified on a set of input-output data. Both time domain and frequency domain

comparisons are made. The effect of the sampling period and model order on the perfor-

mance of the Residual Generators are also discussed. Chapter 4 presents failure detection

experiments where the sensor set consisted of two gyros and an accelerometer, The effects

of model order and sampling frequency are again illustrated. The detection of actuator

failures are discussed in Chapter 5. In Chapter 6 we use Generalized Parity Relations to

monitor control system component failures on the ACES mast. Chapter 7 gives an overview

of the Failure Detection Filter and experimental results are then discussed. Conclusions and

directions for future research are given in Chapter 8.
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Chapter 2

Generalized Parity Relations

In the previous chapter we gave an outline of an FDI system where, for convenience of

analysis, we divided the system into two functional parts: the Residual Generator and the

Decision Function. In this chapter we give a brief description of a method to generate

residuals. The method, known as Generalized Parity Relations, is treated in detail by

Chow [4] and Dutilloy [5].

There are two forms of analyticM redundancy, namely direct redundancy and temporal

redundancy. In direct redundancy a relation is formed by taking a linear combination of

the instantaneous values of a set of sensors whose outputs are linearly dependent. As an

example, let I denote a set of sensors whose instantaneous outputs are linearly dependent

and let the jth sensor be a member of the set. We can then find a relation for the jth

output yj :

iEI

(2.1)
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Theresidualis thendefinedas

r(t) = y (t) - (2.2)
iE1
iCj

which will be zero (except for noise or other unmodelled effects) when all the sensors are

fully operational and nonzero in the case of a failure. Note that if r(t) is nonzero, any of

the sensors in the set could have failed -- this single relation does not indicate which sensor

has failed.

In temporal redundancy, the histories of outputs and inputs are taken into account. The

following example is used to illustrate temporal redundancy: consider a vehicle with mass

rn and velocity v(t) with commanded force f(t) being applied to it. The velocity at time

t + At is given by the relation

v(t + At) = v(t) + f(t) At. (2.3)
m

The velocity measurements v(t) and v(t + At) are now used together with the commanded

force to form the residual

r(t + At) = v(t + At) -- v(t) -- _f(''t_At. (2.4 /
m

If the rate sensor fails in some way the measured velocity will differ from the actual velocity

so that residual r(t + At) will be nonzero. Thus, the nonzero residual indicates the failure of

the sensor. When the actuator fails, the force applied to the mass will be different from the

commanded force that is used to compute the residual. Hence, the residual will be nonzero

and we can also detect the failure of the actuator. In this example, both the sensor failure

and the actuator failure result in the residuM being nonzero; therefore, without additionM

information we cannot determine which one of the components has failed when we observe

a nonzero residual.

17



In our discussionsofar weassumedthat theresidualisexactly zerowhenthe systemis in

perfectworkingcondition in a practicalFDI systemthis will neverbe the casebecause

there will alwaysbe measurementnoise,disturbances,and modelmismatches.For the

exampleunder discussion,the only parameterfor the plant is the massm and, for the

residualto havea smallamplitude,the massmust beknownaccurately.Thebest wecan

hopefor in a practicalsystemis aresidualwith a small amplitude when all the components

are functional and a large amplitude when a component has failed. Hopefully the difference

between small and large will be large enough so that a threshold detector can then be

used to discriminate between the failed and unfailed states. This example illustrates that

generalized parity relations can be used to detect sensor and actuator failures and that the

residual generator depends on the fidelity of the model to give a small residual when all the

components are fully operational.

In this work we will discuss only temporal redundancy relations. Furthermore, the formula-

tion of parity relations does not require the specification of measurement and process noise

models; therefore, we will not include noise in the plant model. Chow [4] treated the case

where noise is present in the system and discussed methods to obtain robust relations.

2.1 Single Sensor Parity Relations

Generalized parity relations can be constructed so that it is possible to identify which sensor

has failed. The procedure is to construct parity relations from different subsets of the sensors

so that when a sensor fails, only a subset of the parity residuals becomes larger. In this

section we will discuss a specific method that can detect and identify sensor failures. The

method, known as single sensor parity relations (SSPR), is discussed in detail by Dutilloy [5]

and Massoumnia and Vander Velde [11]. The basic idea is to construct a set of relations

18



{ri, i = 1, 2, ...} so that each residual rl depends on one and only one sensor Yl. When

a sensor fails only the corresponding residual is affected, and it is therefore very easy to

identify which sensor has failed. In general, when an actuator fails, all the single sensor

parity relations will be affected. In this case, the Decision Function (see Chapter 1) will

decide that it was not all the sensors that have failed simultaneously as this is unlikely to

happen.

We will assume that the plant can be modelled accurately by a continuous-time, linear_

time-invariant model given by

_(t) = Acw(t) + Bcu(t), (2.5)

y(t) = Cx(t) + Du(t), (2.6)

where _(t) E ]_n_ is the state vector, u(t) E _ is the commanded input vector, y(t) E ]_

is the measurement vector, and Ac E _×_x Bc E _×n_, C E ]_×nx, and D E Rn_×_

are the usual continuous-time state-space matrices. When a sensor fails the output can be

modelled by

y(t) = C_c(t) + Du(t) + f(t), (2.7)

where the vector f(t) is an unknown function of time. This simple model is adequate

to describe many failures that occur in practical systems and is discussed in more detail

by Jones [6] and Massoumnia [10]. We will make no attempt to characterize f(t); an

important property of generalized parity relations is that no failure modes and corresponding

probabilities of failure need to be specified. It is important to notice that the output given

by Equation (2.6) is modified in some sense when a sensor fails.

The construction of generalized parity relations requires a discrete-time model of the sys-

tem. Let T_ denote the sampling period. If the input signal u(t) is constant over the
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interval kT_ <_ t < (k + 1)Ts, the continuous-time system of Equations (2.5) and (2.6) can

be discretized as follows:

• ((k ÷ 1)Ts) = eAcTsw(k) + eAc(T_-_)Bcdru(kTs)

: As(k) + Bu(kTs),

y(kTs) = C¢(kT,) + Du(kT_),

where

(2.s)

(2.9)

A = eAcT_, (2.10)

/?B = eA_(rs-")Bc d7 (2.11)

The notation _(k), y(k) and u(k) will often be used to donate _(kT_), y(kT_) and u(kT_)

respectively.

Consider now the ith sensor output yi and let c_ and d_ denote the ith row of C and D

respectively; the output history is easily obtained in terms of the initial state _(k) and

inputs u(k), u(k + 1), ... as

yi(k) = +

yi(k + 1) = c_Ax(k) + c_Bu(k) + d_u(k + 1),

yi(k + 2) = c_A2x(k)+c_ABu(k)+c_Bu(k + l)+d_u(k + 2),

yi(k + ni) = c_An'_(k) + c_An_-lBu(k) +...+ c_Bu(k + ni - 1) + d_u(k + ni).

(2.12)

These equations can be written in a compact form as follows:

yi(ni) = Cix(k) + Diu(n_), (2.13)
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where

y_(ni)

u(nl)

Ci

D i =

[y_(k); yi(k + 1); ... ; yi(k + nl)],

= [u(k); u(k + 1); ...; u(k + ni)],

= [c_; c_A;...;c{An'],

d_ 0 0 ... 0

c_B d_ 0 ... 0

c_AB c_B d_ ... 0

: : : ".. :

c_A",-1B c_A"'-2B _A"'-3B ... d_

(2.14)

(2.15)

(2.16)

, (2.17)

with Yi E ]_n_+l u E _(n_+l)n,,, El E _(ni+l)xnx and D_ E R(n_+l)x(n_+l)n=. Note that the

Cayley-Hamilton theorem assures that Ci will be singular for nl >_ n_. If ni is chosen large

enough so that the matrix Ci becomes singular, we can find a vector/_i E _[n_+l in the left

null space of Ci so that

(2.18),_c_ = o,

_i = [_i,ni; _i,n,-l; ...1 _i,1; 1], (2.19)

where we have scaled the vector so that last element, _0 = 1. The reason for this choice will

become clear later. If the system is observable from the ith sensor, nl = n_.

Multiplying Equation (2.13) by/3 T and rearranging we get

_Tyi(nl) -- _TDiu(nl) = O. (2.20)

Equation (2.20) is called the ith single sensor parity relation. When the ith sensor fails, the

output equation is modified in some unknown way so that the above relation will not hold.

21



Wedefinethe ith residual as

ri(k+ ni) T= f_iyi(nl) - f_TDiu(n_)

T n=

= _i,y -- ri,u

(2.21)

(2.22)

where ri,y is the contribution of the ith output, rl,u is the contribution of all the inputs and

czi = f_TDi (2.23)

= [OLi.l,ni ; OLi,2,nl; ...; OZi,nu,ni; O_i,l,ni--1; O_i,2,ni--l_ ..._ O_i,nu,ni--1; ''';

ai,l,0; ai,2,o; ...; ai,n_,0], (2.24)

ai E R(n_+l)n_. When all the sensors and actuators are fully operational, the model matches

the plant exactly, and there are no measurement noise and disturbances, all the residuals

ri, i = 1, 2 .... , n v will be zero. When the ith sensor fails, ri(k) will be nonzero and because

the residuals rj(k), j _ _, are not functions of the ith sensor, they will remain zero. Thus it

is possible to detect and identify the failure of the ith sensor. Equation (2.21) has the form

of a multi-input single-output finite impulse response filter and both the system input vector

u(k) and the scalar output yi(k) are inputs to the residual generator. A block diagram of

the SSPR Residual Generator is shown in Figure 2.1. Because the system under discussion

is time-invariant the starting time is arbitrary. Using this property and Equations (2.19)

and (2.24), we can rewrite Equation (2.20) as summations,

"tZi nu ni

81 = 8) (2.251
s=0 r----1 s----0

which is an ARX model for the system. (ARX = autoregressive with external input.)

The ARX description motivated the choice for 30 = 1 as this gives a monic denominator

polynomial for a single-input single-output system. If we can find an ARX model for the
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Generator
Un u

• r i

Figure 2.1:Block diagram of SSPR Residual Generator.

plant we do not need to find the state-space matrices. Many system identification techniques

immediately identify an ARX model from input-output data; see for example Ljung [7]. We

can, therefore, use standard system identification techniques to identify the coefficients of

Equation (2.25) and simply rearrange the equation to obtain a parity relation. Seen in

another way, constructing a robust parity relation is equivalent to finding a robust ARX

model for the plant.

2.2 Double Sensor Parity Relations

In some practical cases single sensor parity relations do not provide a reliable indication of

sensor failures. By using combinations of two or more sensors it is possible to construct more

complex parity relations. The different combinations must be selected so that it would still

be possible to identify which sensor has failed. One such method, which will be referred to

as double sensor parity relations (DSPR), combines the outputs of two sensors. The double

sensor parity relations are derived as follows: let the ith and jth measurements be given by

yi(kTs) = c}x(kTs) + d}u(kTs), (2.26)

yj(kTs) = c_x(kTs) + d_ju(kTs), (2.27)
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where c_, cj, di and dj are the ith and jth rows of C and D respectively. Similar to the

single sensor case, we write down a set of equations that relates consecutive outputs with

an initial state and the inputs to the system:

yi(k) = c_a;(k) + d_u(k),

yj(k) = c}a_(k) + d}u(k),

yi(k + 1) = c_Aa_(k) + c_Bu(k) + d_u(k + 1),

yj(k + 1) = c}Aa_(k) + c}Bu(k) + d_u(k + 1),

yi(k + ni - 1)

yj(k -t- nj)

yi( k + ni )

= c_An'-l_(k)+c_An'-2Bu(k)+'"Ed_u(k + ni- 1),

= c_AW_(k)+c_AW-_Bu(k)+...+d_u(k + nj),

= c_An'a_(k) + c_An'-lBu(k) +... + d_u(k + ni), (2.2s)

where we assume that ni = n_ + 1. These equations can again be written in a more compact

form similar to Equation (2.13) but, to simplify notation, we will first reorder the equations

so that all the equations involving Yl appear first. We then have

\

Yi(ni) /
yj(nj) ,

= c_(k) + D_j.(_), (2.29)

where

yi(ni)

yj(nj)

C_

= [yi(k); yi(k + 1); ...; yi(k + ni)],

= [yj(k); yj(k + 1); ...; yj(k ÷ nj)],

- [c_; c_A; ...; c_An'; c); c)A; ...; c_AnJ],

(2.30)

(2.31)

(2.32)
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Di

Dij = , (2.33)

mj

where Di and Dj are defined by Equation (2.17) with nl + I and nj -I- 1 rows respectively.

Because we have assumed that nj is one less than ni, the last n_ columns of Dj will be zero

because yj(k + nj) does not depend on u(k + ni). The condition for constructing a double

sensor parity relation is given by Chow [4]: the observable subspaces of the ith and jth

sensors must overlap. Assuming this is the case, we can find vectors/3 i and/_j so that

[_T, T cj3j] ij = 0. (2.34)

Multiplying Equation (2.29) with [/3T,/3 T ] we get the ijth double sensor parity relation

ni nj nu nl

_ _,_y_(k- _)+ _ _j,syj(k - _)- Z _ _j,r,sur(k -- _) = 0, (2.35)
s=0 s=l r=l s=0

where

= 3j ]Dij. (2.36)

A block diagram of the DSPR Residual Generator is shown Figure 2.2. If either the ith or

Yi

Yj
Ul

Un u

DSPR
Residual

Generator
• rij

Figure 2.2: Block diagram of DSPR Residual Generator.

the jth sensor fails the above relations will not hold; we define the ijth DSPR residual rlj
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as

nl n3 nu ni

_(k) = Z_._y_(k - _) + _f_j,_yj(k - _) - _ _ _j,_,_,_(k - _). (2.37)
s=0 s=l r=l s=0

In general, when the ith sensor fails, the set of residuals riq, i < q <_ n v and rpi , 1 <_p < i

will all be nonzero. This set uniquely identifies the ith sensor.

If, instead of using the ith measurement as the last row in Equation (2.28) we use the jth

measurement, nj will equal ni + 1 and we get a dual relation and residual. We will refer to

these as the jith DSPR and residual respectively. The residual in this case is

nl _3 n_ n 0

r_i(k) = _i,syi(k _)._j,syj(k-s)-__,_,_(k-_). (2.38)
s=1 s=0 r=l s----0

2.3 Actuator Parity Relations

In the example at the beginning of this chapter we have shown that generalized parity

relations can be used to detect actuator failures. Dutilloy [5] has shown how to construct

actuator parity relations given the discrete-time system description, Equations (2.8) and

(2.9), for the case D = 0. The case where D is nonsingular will be treated here. To construct

the actuator parity relations we again find the output history as in Equation (2.12) but now

we must use the same number of sensors as actuators, i.e., we must use a subset of sensors

so that ny = n_. The reason for this requirement will become clear later in the derivation.

We will assume that this is the case and that the output is given by Equation (2.9). The

set of output equations can be written as a matrix-vector equation

where

y(ni) = Cx(k) + Du(ni), (2.39)

r(n_) = [y(k); y(k + 1); ..; y(k + n_)], (2.40)
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u(ni) =

C

D

[u(k); u(k + 1); ...; u(k + ni)] (2.41)

IUl(]_); ?_2(k); ...; Unu(k); ltl(k + 1); u2(k+ 1);...; un_,(k+ 1); ..-

ul(k + hi); u2(k + hi); ...; Un,(k + hi)], (2.42)

[C; CA; ...; CAn'], (2.43)

D 0 0 ... 0

CB D 0 ... 0

CAB CB D . .. 0

: : : ".. :

CAn_-IB CAni-2B CAni-3B ... D

, C E _(nv.}-l)nyxnx, and D E _(ni..I-1)nyX(niq-1)n_y E _(ni+l)ny, o E _(ni+l)nu

(2.44)

Because we

have chosen ny = n_ the matrix D will be square. Assuming D is invertible, we can multiply

Equation (2.39) by D -1 and after rearranging we get

u(nl) = (- D-1 C)x(k) + D-ly(nl). (2.45)

This equation is similar to Equation (2.13) with the roles of the outputs and the inputs

interchanged. By proceeding as before, we can construct single actuator parity relations

(SAPR) and double actuator parity relations (DAPR). A little more work is necessary for

the actuator case because u(n_) contains all the elements of the input in an interleaved

way as shown in Equation (2.42). For example, if we want to construct a SAPR for the

ith actuator, we must form a vector of inputs that has only ui's as elements, starting with

ui(k) and taking every n_th element of u(nl). In order to refer to the rows of D -1 C and D-1

in an easy way we define the following temporary matrices

= -D -1C (2.46)
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= cl; ...; c(ni+l)n, ,

D = D-1

"Tt= ;

We can now set up equations similar to Equation (2.12) for the ith actuator,

_i(ni) = [ui(k); ui(k + 1); ..., ui(k + nl)]

= _(k) + b_y(n_),

(2.47

(2.48

(2.49)

(2.50)

(2.51)

[ -' ]Ci; Ci+n_: ..._ Ci+nuni E

i+n,,, . : 7t _(ni+a)x(n_+Dn,,

We now find a vector c_i so that

o,f t, = o.

The ith SAPR residual is defined as

ri(k)

where

_T =

= c_TDiy(ni) - c_Tai(n_)

= t3TY(ni ) -- o_TSi(ni)

ny ni ni

= _ _z,,.,,y_(k- _)- _.,,.u,(k- _),
r=l s----0 s=O

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57

o_Tb_ (2.58

[/_i,l,nl; fli,2,ni'_ .. • ; Zi,nu,ni; _i,l,ni-1; _i,2,ni-1; ... ; fli,nu,ni--1; "'" ;

/3i,a,o; /3i,2,0; ... ; fli,,,,o], (2.59

Because of the requirement that ny = n_, it was found that there is usually more than

one vector in the left null space of Ci. These vectors give true parity relations (see Lou
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et al. [8]) asthey all satisfyEquation(2.54)exactly• It is not clearat this point howto

selectbetweenthe differentvectors,andwhetheroneis necessarily"better" than another.

A block diagramof the SAPRResidualGeneratoris shownin Figure2.3.

ui

Yl

Yn_

SAPR
Residual

Generator
' ?'i

Figure 2.3: Block diagram of SAPR Residual Generator

In a similar way we can construct DAPR of the form rij and rji. Although we will show

experimental DAPR results, we will not derive the equations here as the procedure leading

to the results is analogous to the single actuator case.

2.4 Example

To illustrate some of the ideas discussed in the foregoing sections, we present a simple

example of a second order system. Many practical systems, including the Mini-Mast which

we will discuss in more detail later, are described by the following m-mode state-space

model

A1 0

0 Am

+

Sl

Bm

u(t) (2.60)
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where

A i -_ , i = 1, ..., rn, (2.61)

°'" 0

Bi = , i= 1,..., m, (2.62)

bi,1 "'" bi,nu

where w_ is the natural fi'equency of the ith mode with corresponding damping ratio (i. We

will analyze only one of the second order blocks. In order to simplify some of the hand

calculations we will further write the continuous-time state-space model in the observable

canonical form (see Chen [3])

_(t) =

y(t) =

2
0 --_Jr_

1 -2_w_

[o lib(t)

c'x(t).

)(2)_n

_,(t) +
0

u(t), (2.63)

(2.64)

(2.65)

The following parameters will be used:

sampling period

natural frequency

damping ratio

Ts = 0.015 seconds,

w_ = 5 rad/s (0.8 Hz),

= 0.01.

The discretized system is given by

m(k + 1)
0.9972

0.0150

-0.3774

0.9957

• (k) +
0.37460.0028

u(k)
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y(k)

= Ax(k) + bu(k), (2.66)

= [0 1]_(k)

= c%(k). (2.67)

We can also write this single-input single-output system as a difference equation

y(z) = c'(zI- A)-lbu(z) (2.68)

n(z)
- uCz)

d(z)

b21z-1 + (a21bll - allb21)z -2

1 - (all + a22)z -1 + (alia22 - a12a21)z -2u(z)

0.002810z -1 + 0.002808z -2

1 - 1.992883z -1 + 0.998501z -2u_zj" (2.69)

The difference equation describing the system is

y(k) - 1.992883y(k- 1)+0.998501y(k- 2) = 0.002810u(k- 1)+ 0.002808u(k-2). (2.70)

The SSPR residual is easily found as

2 2

T= Zzsy(k - _) - _-._(k - _),
s=0 s=l

where

(2.71)

/3 = [0.998501; -1.992883; 1], (2.72)

a = [0.002808; 0.002810; 0]. (2.73)

Note that a0 = 0; this is expected because there is no direct feedforward from the input to

the output. The plant and Residual Generator are shown schematically in Figure 2.4. Note

that the transfer functions of the Residual Generator are the numerator and denominator

of the transfer function of the plant the residual is formed by multiplying the output

y(z) by the denominator polynomial, the input u(z) by the numerator polynomial, and
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Residual Generator
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Plant

d(z)

n(z)

ry

r u
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Figure 2.4: Block diagram of the plant and SSPR Residual Generator.

subtracting the latter from the former. The transfer functions for this Residual Generator

are shown in Figure 2.5. The transfer function from y to r has a large magnitude at high

frequencies. This will always be the case for practical systems as they have a natural roll-off

at high frequencies. The high gain at high frequencies can be a source of trouble if we have

noisy sensors or unmodelled high frequency dynamics.

The coefficients multiplying the input sequence are very small it was first believed that

this is due to the small damping in the system but it is easily shown that this is not

necessarily the case. By repeating the above example and changing the damping ratio by a

factor of ten to _ = 0.1, we get the following coefficients:

0.01

0.10

0_2 _1

0.002808

0.002783

0.002810

0.002797

The discretization step was also carried out symbolically and the detail can be found in
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Figure 2.5: Transfer functions of the SSPR Residual Generator. The transfer

functions are periodic and are shown up to half the sampling frequency.

Appendix A. We see that the elements of the A and B matrices have factors like e-¢_-Ts.

cos(_x/_-- ¢2 Ts) and sin(wnv/] - - ¢2 Ts). The small coefficients are a result of the product

of (, _, and Ts. Even if we had a larger damping ratio (, these elements of _ will still be

small because T_ is small. For a given practical system we have no control over ¢ and the

only parameter that we can vary (to a limited degree) is the sampling period.

For the single-input single-output case. the single actuator parity relation is identical to the

single sensor parity relation. Therefore. only one relation emsts and it is not possible to
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determinefrom a nonzeroresidualalonewhetherit wasan actuatoror sensorfailure.
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Chapter 3

Displacement Sensor Failure

Detection

3.1 Introduction

In this chapter we discuss a series of failure detection experiments that were conducted on

the Mini-Mast. Specifically, we will look at the detection of displacement sensor failures of

the Mini-Mast and discuss several factors that influence the performance of the Residual

Generators. We will also compare parity relations obtained from a state-space model with

parity relations identified directly on a set of input-output data. The parity relations

obtained from the state-space model will be referred to as the model-based relations and

those obtained by identification as the identified relations. First, we give a brief description

of the Mini-Mast.

The Mini-Mast is an experimental truss at the NASA Langley Research Center, Hampton,
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Virginia. The mastis deployedvertically andis rigidly fixed at its base. It has18bays.

eachof length 1.12meter(3.68ft); the total lengthof the mastis 20.16meters(66.14ft).

Thebaysarenumbered1through18.with Bav 18 at the top. The mast has three member

types: longerons, battens, and diagonals. Longerons are parallel to the vertical a_s and

provide beam stiffness and strength in bending. Battens are in the beam face planes and

provide stability. Diagonals, also in the beam face planes, provide stiffness and strength

in torsion and shear. The mast is shown schematically in Figure 3.1. The truss has 57

corner joints with stainless steel pins that allow the longerons and diagonal members to be

hinged, so that it is possible to retract and deploy the mast. Three torque wheel actuators

X

18

Sensor 2

)( ensor 3

Sensor 1 _y

Figure 3.1: Schematic diagram of the Mini-Mast and orientation of the dis-

placement sensors. The sensors measure displacements normal to their surfaces,
relative to a fixed structure.
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are mounted at the top of the mast parallel to the XYZ axes. By applying voltages to

these motors, it is possible to apply torsional and bending torques to the mast. These

actuators were used in the failure detection experiments to excite the mast. The mast is

also instrumented with a full set of accelerometers, rate gyros, and displacement sensors.

The displacement sensors are mounted so that each measures displacements normal to its

reference surface, and relative to a fixed structure that is built around the mast. Three

displacement sensors are mounted at each bay but only the three sensors at Bay 18 were

used.

A finite element model for the Mini-Mast has been developed by NASA to analyze the modal

frequencies and mode shapes. A brief summary is given here; detail can be found in Pappa et

al. [13]. The first two modes are the first bending modes, oriented in the X and Y directions.

The natural frequencies of these modes are approximately 0.65Hz. This is followed by the

first torsion mode with a natural frequency of approximately 4.4Hz. The fourth and fifth

modes are the second bending modes with natural frequencies of approximately 6.2Hz. The

directions of the second bending modes are rotated by 45 degrees from the X-Y directions,

thus coupling the bending responses. The first and second of 108 local modes, caused mainly

by the diagonal members, have natural frequencies of approximately 14.8Hz. Other modes

are: second torsional at 20.86Hz, third bending modes at 29.79Hz and 30.94Hz, third

torsional at 38.83Hz, fourth bending modes at 40.12Hz and 43.41Hz, fourth torsional at

54.30Hz, fifth bending modes at 66.34Hz and 70.25 Hz, and fifth torsional mode at 71.88 Hz.

The state-space model used to generate the model-based parity relations included the first 5

modes of the system; the modal frequencies and damping ratios used are shown in Table I.

The state-space model was obtained by Drs. Raymond Montgomery and David Ghosh of

NASA Langley Research Center by an analysis of input-output data in preparation for

the design of a control system for the Mini-Mast. The state-space matrices are given in
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AppendixB.

Table I. State-space model modal frequencies and damping ratios

Mode

First bending

First bending

First torsional

Second bending

Second bending

0.0323

0.0213

0.0717

0.0238

0.0100

[Hz] w [rad/s]

0.8559 5.3778

0.8547 5.3702

4.2933 27.0133

6.1186 38.4440

6.1669 38.7478

Several experiments were conducted on the Mini-Mast to obtain input-output data sets.

The mast was excited by driving the torque wheels with random signals. For the experi-

ments discussed in this chapter, the input signal amplitudes were independent, identically

distributed with a uniform probability density function. The sampling period Ts was 15 ms.

This is a baseline sampling period that will be used by the control system for the mast.

The input signals were held constant for four sampling periods, i.e., for 60 ms. This choice

gave the freedom to simulate different sampling periods when analyzing the sensor parity

relations. Unfortunately, keeping the amplitude constant for more than one sampling pe-

riod but taking samples every sampling period results in a signal with a spectrum that

has zeros at frequencies lower than half the sampling frequency. A typical spectrum of an

input signal that was held constant for four sampling periods but that was sampled every

sampling period is shown in Figure 3.2. Fortunately, due to nonlinearities of the actuators

and joints of the Mini-Mast. no zeros occurred in the output spectrum.
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Figure3.2: Spectrum ofthe input signal The input was held constant for4sam-

pling periods (4Ts) but samples were taken every sampling period, 2ins = 15 ms.

The three displacement sensors at the tip of the mast will be referred to as Sensor D1, Sen-

sor D2 and Sensor D3 with corresponding measurements Yl, Y2 and Y3 and SSPR residuals

rl. r2 and r3. The transfer functions from the ith measurement Yi to the ith residual ri will

be called B_(z) and the transfer functions from the inputs ul, .... un_ to ri will be denoted

by Ai.l(z), .... Ai,nu(z). In some experiments we will use an increased sampling period of

30 ms. which is twice the baseline sampling period; this will be referred to as 2Ts. The order

of the parity relation, n_ in Equation (2.25), will be referred to as the number of lags. Note

that for ni lags we are actually using ni + 1 samples of the corresponding measurement:

ni past values plus the current sample. Corresponding to the 10 dimensional state of the

state-space model used. the model-based parity relations incorporate 10 lags.
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The spectrum of Y2is shown in Figure 3.3. In this figure we clearlv see the first bending mode

-100
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-160

-18oL

-200 L
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-260

-2800

\
\

\
\

5 10 15 20 25 3'0

Frequency [Hz]

Figure 3.3: Spectrum of Displacement Sensor 2.
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at appro_mately 0.9 Hz and the first torsional mode at 4.3 Hz. The peaks in the spectrum

at 12.6Hz. 13.9Hz and 16.6Hz correspond to the local modes. The second torsional mode

• )

is at approximately 21.4Hz. Further, though the input signals have zeros in their spectra

(see Figure 3.2), they do not show up in the spectrum of the output signal. Note that 256

point DFTs were used to compute these spectra so that we do not have very fine spectral

resolution. The spectra of the other two displacement sensors are similar in nature to the

one just shown and will not be shown here. When we refer to a particular behavior of a

residual later in this work only one example will be given to illustrate the point. If a specific

example does not represent all the sensors it will be noted explicitly.
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Failuresof the sensorsweresimulatedin thedataby modifyingthe recordeddata. In most

of theexamplesthat wewill discussthesensoris failedto zeroby simplyzeroingtheoutput

data. (SeeEquation (2.7) for the modellingof failures.) We will also choosethe failure

timesto be approximatelyin the middleof a plot sothat it will beeasyto comparethe

amplitudeof the residualbeforeandafter the failure.

3.2 Model-based Single Sensor Parity Relations

Figure 3.4 shows the failure of Sensor D1 that has failed to zero at sample number 213.

The failure is clearly indicated by the large transient in the residual. In this figure we also

see a behavior that was typical for all model-based residuals for displacement sensors: the

residual has a large amplitude while the sensor is in perfect condition followed by a smaller

amplitude when the transients excited by the failure are gone. In Chapter 2 it was shown

that the inputs to the ith Residual Generator are all the control inputs and, for single

sensor parity relations, the ith measurement. Equation (2.22) further shows that the ith

residual ri has two components ri,y and ri,u, corresponding to the ith measurement and

all the inputs. The residual is defined as the difference between these two components.

Therefore, except for noise and unmodelled effects_ we expect these two components to be

equal. Plotting the components rl,y and r:,_ separately in Figure 3.5, we see that this is not

so. The component r:,y has a much larger amplitude than r:,_ and there is no similarity

between the two components. At first it was believed that this discrepancy is due to the

small damping of the mast but the example at the end of Chapter 2 clearly indicates that

this is not the reason. This difference in amplitude of the two components explains the

previously mentioned behavior that the residual amplitude is large while the sensor is fully

operational and small when the sensor has failed. The reason for the mismatch will be given
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Figure 3.5: Components rl,u (top) and r],u (bottom) of model-based SSPR r].

Sensor D1 has failed to zero at sample number 213.
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when we discuss the transfer functions of the Residual Generator.

The SSPR residual r3 is shown in the top of Figure 3.6. In this example Sensor D3 has

failed to zero at sample number 235. As before, we see a large transient when the failure

occurs. The bottom of Figure 3.6 shows the same residual, but this time Sensor D3 has

failed at sample number 234, one sample (15 ms) earlier. Although a brief pulse is visible,

we did not get a clear failure signature and the spike could have been caused by noise.

This inability of the model-based single sensor parity relations to give a clear indication

of sensor-off failure modes occurred often and the reason for the poor performance will be

explained later. We now show a different failure mode.

A noisy sensor was simulated by adding white noise to the output of Sensor D2. The

plot at the top of Figure 3.7 shows the output of Sensor D2 with noise added to it from

sample number 240. The standard deviation of the noise was one hundredth that of the

standard deviation of the measurement Y2. The effect of the noise is barely visible in the

measurement. The corresponding SSPR residual, r2, is shown in the bottom of Figure 3.7.

The failure is clearly indicated by the residual. So the added-noise failure mode is clearly

detected by the parity relation. However, this extreme sensitivity of the residual to noise

can be a problem when we are working in a really noisy environment. Before we discuss

the transfer functions of the Residual Generators we first turn to parity relations identified

on input-output data.
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Figure 3.6: Top: model-based SSPR r3 when Sensor D3 has failed to zero

at sample number 235. Bottom: the same residual when Sensor D3 failed at

sample number 234, one sample earlier.
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3.3 Identified Single Sensor Parity Relations

It was noted in Chapter 2 that single sensor parity relations correspond to an ARX model

of the plant. Using a different set of input-output data, the coefficients of the parity relation

(see Equation (2.25)) were identified using a least squares criterion. The length of the data

set was slightly less than 30 seconds. These parity relations, which will be referred to as

identified relations, were applied to the same data used in Section 3.2. Figure 3.8 shows

E

xlO -5

4

2

0

-2

0

I I I I

I I I I

100 200 300 400 500

Sample number

Figure 3.8: Identified SSPR residual r 3. Sensor D3 has failed to zero at sample

number 234. Compare with the plot at the bottom of Figure 3.6.

the identified SSPI_ residual r 3 when Sensor D3 has failed to zero at sample number 234,

i.e., at the same time as portrayed in the bottom graph of Figure 3.6. In that case the

model-based SSPR failed to give a clear indication of the failure. In Figure 3.8 we see

that the identified residual gives a very different failure signature. First, note that the
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amplitudeofthe identifiedresidualissmallerthantheamplitudeofthemodel-basedresidual

by approximatelytwo ordersof magnitude.Furthermore,the amplitudeof the identified

residualis smallwhile the sensoris in goodconditionandlargewhile the sensoris faulty,

the oppositeof what wehad before. Clearly,this caseis muchcloserto what wewould

like to see.To highlight thedifferencebetweenthe model-basedandidentifiedrelations,we

showthe componentsr3,y and r3,u in Figure 3.9. Here we see that the contributions r3,y

and r3.u are approximately of the same magnitude. We also see in these figures that the

two components have similar wave forms and thus, when subtracted from each other, will

result in a residual with a small amplitude. Careful comparison between Figures 3.6 and 3.9

further shows that, while the sensor is in working condition, the model-based residual has

more high frequency content than the identified residual. The reason for this will become

clear when we discuss the different Residual Generator transfer functions in the next section.

With the identified relations we have the luxury of easily increasing the number of lags used

in the parity relations. In Figure 3.10 we show the residual of an identified SSPR relation

with 20 lags. To make a comparison with a previous failure we have chosen a failure of

Sensor D3 at sample number 234. Comparing Figure 3.10 with Figure 3.8 we see that

increasing the number of lags results in a residual with a smaller amplitude while the sensor

is in good health and a slightly larger residual when the failure is present. Therefore, at the

expense of an increase in the number of computations, we can improve the failure signature

by choosing a higher order model.
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3.4 Transfer functions of model-based and identified Single

Sensor Parity Relations

To explain some effects that we have seen in the preceding sections and further highlight

the differences between the model-based and identified SSPR residuals, we now turn to the

transfer functions of the corresponding residual generators.

In Chapter 2 it was noted that a SSPR Residual Generator is a multi-input single-output

finite impulse response filter so that the individual transfer functions have no poles (except

for poles at the origin). The zero locations of the model-based and identified Residual

Generators for the transfer function B2(z) are shown in Figure 3.11. We see that the

identified relation has zeros at higher frequencies than the model-based relation. The zeros

of the model-based Residual Generator are simply the poles of the plant (see Section 2.1),

and the poles have been constrained to the first five modes of the mast by our selection of

the model. During the identification process no constraint is placed on the pole locations

and the resulting model thus gives poles that give the best fit over all frequencies. Except

for one complex zero pair, there is little correspondence between the zero locations of the

two transfer functions.

The transfer functions of the model-based and identified Residual Generators are compared

in Figure 3.12. We first note that the model-based transfer function from Y2 to r2 has a

small gain at low frequencies and a high gain at high frequencies. This high gain at high

frequencies explains the extreme sensitivity that the residual showed to a noisy sensor (see

Figure 3.7). Although it was not shown there, the corresponding identified residual was less

sensitive to noise. The high gain is also responsible for the good transient that we have seen

in Figure 3.4. In that figure we see that there was an abrupt change in the measurement

at the time of failure. For the example shown at the bottom of Figure 3.6, the time of
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Figure 3.11: Left: Zero locations of the model-based Residual Generator transfer

function Y2 to r2. Right: Zero locations of the identified Residual Generator

transfer function Y2 to r2. The solid line circles have radius 1. Note that the

model-based Residual Generator has two closely spaced zeros at approximately
45 degrees.

failure was chosen so that the output y3 was close to a zero crossing point so that there

was no abrupt change in the signal. The high gain at high frequencies also explains why

the components r2.y and r2,u have such different amplitudes noise in the measurement is

amplified considerably so that the contribution of that component is much larger than the

contribution of ul,..., un,. The model-based transfer functions A2a(z), ..., A2,3(z) also

have smaller gains at low frequencies than the identified relations. The identified relation

clearly puts more emphasis at low frequencies and less at high frequencies.

The spectra of the model-based and identified residuals are shown in Figure 3.13. We see

that the model-based residual has very little frequency content at low frequencies and much

greater frequency content at high frequencies. Note that the difference of the minimum
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Figure 3.12: Transfer functions of the model-based (solid line) and identified

(dashed line) SSPR Residual Generators. Top left: y2 to r2, top right: ul to

r2. bottom left" u2 to r2, bottom right: u3 to r2.

at low frequencies and the maximum at high frequencies is almost 180 dB! Clearly, the

model-based Residual Generator does a very good job at frequencies below 7Hz. However,

because we have a reduced order model with an excellent match at low frequencies, there is

a significant mismatch at high frequencies and this prevents the model-based relations from

obtaining good performance. The large high frequency content was pointed to earlier when

we discussed the differences between model-based and identified relations in Figures 3.5, 3.6

and 3.9. Note further that the model-based spectrum clearly shows a peak at approximately

14.4 Hz that corresponds to the local modes which are not included in the state-space model.
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Figure 3.13: Spectra of the model-based and identified residuals.

The spectra of the identified residuals exhibit an almost flat response over all frequencies.

The limitation of the 10 lag relation clearly shows up as a peak at approximately 0.9Hz.

the first bending mode. as well as a peak at approximately 6Hz, the second bending mode.

Increasing the number of lags to 20 clearly shows an improved match at the first bending

mode and a spectrum with a slightly smaller magnitude over most of the frequency band.

In the next section we investigate the effectof the sampling period on the performance of

the Residual Generators.
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3.5 Increased Sampling Period

It was found that increasing the sampling period had a significant effect on the identified

SSPR residuals. An increase in the sampling period gave improvement on the model-based

SSPRs. Using the same data set as before the sampling period was increased to 30 ms,

i.e.. 2Ts. Figure 3.14 shows the identified residual ra when Sensor D3 has failed to zero at

E

L.

4

-2

-4

x10-5
I I I I

50 100 150 200 250

Sample number

Figure 3.14: Identified SSPR ?'3, 10 lags, sampling period 2T8. Sensor D3 has

failed to zero at sample number 117.

sample number 117; this corresponds to the Same time as we had in Figures 3.9 and 3.10.

Here we clearly see that doubling the sampling period leads to a major improvement in the

failure signature. The same failure is shown in Figure 3.15 where we have used a sampling

period of 30 ms and a parity relation with 20 lags -- an excellent failure signature.

55



E

4

0

-2

xl0-S
I I I I

50 100 150 200 250

Sample number

Figure 3.15: Identified SSPR r3, 20 lags, sampling period 2Ts.

It was hoped that the transfer functions of the corresponding Residual Generators would

hint at why the increased sampling period leads to so much improvement in the residual but

an analysis turned out to be fruitless. One possible reason is that at 10 lags only a small

portion of one period of lowest frequency of interest, i.e., the first bending mode at 0.9IIz,

counts in the computation of a relation with noise.contaminating the measurement, it

is difficult to capture the underlying low frequency component. Increasing the sampling

period results in samples taken further apart so that, using the same number of lags, a

greater portion of one period is covered. Another possible reason is that, at 2Ts, a smaller

frequency band needs to be matched by the ARX model leaving more freedom to give a

better model at low frequencies. The transfer functions of 20 lag, 1T, and 20 lag, 2T,

identified SSPR Residual Generators are compared in Figure 3.16. We see that the 2T,

transfer functions tend to have more peaks and dips at low frequencies compared to the 1Ts
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counterparts, indicating that more modes are being included at the lower frequencies.

3.6 Double Sensor Parity Relations

In this section we present several failures where DSPRs are used to detect the failure.

As before, we will compare model-based relations with identified relations and discuss the

effect of increased number of lags and increased sampling period on the performance of the

Residual Generators.
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Figure3.17showsthe model-basedresidualsh2 andr13 where Sensor D1 has failed to zero

at sample number 238. A brief transient is visible at the time of failure. Note further that

the residual remains small after the transient is gone. Like the model-based SSPRs, the

model-based DSPRs sometimes fail to indicate the failure of a sensor. An example is shown

in Figure 3.18 where Sensor D1 has failed to zero at sample number 250. In this example

the residuals give no indication of the failures at all. Careful inspection of the plot at the

bottom of the figure shows that the first part of the residual up to sample number 250 has

a high frequency content while the part from sample number 250 to the end shows some

underlying low frequencies. This is to be expected as the DSPR Residual Generator has as

inputs the plant inputs ul, u2, u3 as we]] as the two measurements Yl and Y3. Therefore,

even when Sensor D1 fails to zero, the dynamics of the mast are still being fed to the

Residual Generator through Sensor D3. We thus would expect that this signal, which has

low frequencies in it, should appear at the output of the ResiduM Generator.

The detection of the failure of Sensor D2 at sample number 150 by an identified DSPR

is shown in Figure 3.19. Both the residuals r12 and r32 give a clear indication of the

failure. The number of lags used was 10. Although this is a different sensor and the parity

relations have more lags than the model-based relation, a comparison will still be made. We

note that the identified residuals are significantly smaller than the model-based residuals.

Furthermore, the difference in frequency content of the residuM before and after the failure

is large. This invites signal processing to improve the failure signature. It was noted in

Section 2.2 that it is possible to construct a dual parity relation for a specific pair of sensors.

The dual residuMs r21 and r23 are shown in Figure 3.20. Clearly, there is a marked difference

in the amplitudes of the residuals when compared to the ones in Figure 3.19. When this

difference was first noted it was believed that this is because Sensor D2 appears as the first

sensor in the relation but this big difference did not manifest itself in the other relations
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Figure 3.17: Model-based DSPR residuals r12 and r13. Sensor D1 has failed to

zero at sample number 238.
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Figure 3.18: Model-based DSPR residuals rz2 and r13. Sensor D1 has failed to

zero at sample number 250.
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and their dual forms.

Generalized parity relations do not require the specification of the failure mode. The de-

tection of a different type of failure by identified relations is shown in Figure 3.21. Here a

gain reduction of 50% in the output of Sensor D3 was simulated from sample number 180

to 500. Both residuals clearly indicate this failure.

Increasing the number of lags in the relations again resulted in improved failure signatures.

Figure 3.22 shows the residuals where we have used 20 lags in the DSPRs. This is the same

failure that we have seen in Figure 3.20. A comparison of the two figures shows that there is

an advantage in increasing the number of lags. The amplitudes of the residuals are smaller

when the sensors are in healthy condition and larger once a sensor fails.

Increasing the sampling period again resulted in a significant improvement of the failure

signatures. A model-based DSPK at 2T, is shown in Figure 3.23. Comparing this figure

with Figure 3.18 we notice a significant difference between the residuals. Considering that

we are using the same continuous-time state-space model, but now using a longer sampling

period, it is clear that the sampling period has a significant effect on the performance of

a parity relation. An example of a 20 lag identified DSPR with a 2Ts sampling period is

shown in Figure 3.24.
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3.7 Summary

In this chapter we have looked at the detection of displacement sensor failures using single

and double sensor parity relations. A comparison was made between a set of relations

obtained from a state-space model of the Mini-Mast and a set of relations that was obtained

by identifying the coefficients of the parity relations directly from a set of input-output

data. The state-space model included the first five modes of the mast. The model-based

relations failed to indicate all the failures and were very sensitive to noise. The sensitivity

to noise is a result of the very large gains at high frequencies of the corresponding Residual

Generators. The spectra of the model-based residuals indicate that the state-space model

gives an excellent fit at frequencies below 7Hz at the expense of a poor fit at high frequencies.

Reduced order low frequency models are often used in control system design but the results

of this chapter show that they are not suitable to design Residual Generators for use in

failure detection.

The identified residuals always gave a clear indication of the failure, An analysis of the

ResiduM Generator transfer functions shows that the identified relations put more emphasis

at low frequencies and less at the high frequencies. The fiat spectra of the residuals suggests

that it is important that the model fit the plant well even at high frequencies.

By identifying the parity coefficients directly from input-output data we had the freedom

of choosing the model order. In all the experiments an increase in the number of lags

(i.e. increasing the order of the model) led to an improvement of the failure signature. An

increase in the model order usually resulted in a smaller residual while the sensors were

in good health as well as an increase in the magnitude of the residual when a failure was

present.
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To improvethe performanceof the ResidualGeneratorin the caseof sensor-offfailures,

doublesensorsparity relationscanbe used. In all the experimentsand differentfailure

modesconsidered,the doublesensorparity relationsperformedbetter than their single

sensorparity relationcounterparts.Themain reasonfor the improvementis the inclusion

of anextra measurementthat feedsdynamicsof the plant to the ResidualGeneratoreven

whenthe othersensorfails to zero.

Increasingthe samplingperiod resultedin a significantimprovementof the failure signa-

tures. This is probablybecause,with a shortsamplingperiod,only a smallportionof one

periodof alowfrequencyiscoveredbyarelationwith theresultinglossofthe importantlow

frequencyinformation.Furthermore,the samemodelordermustmatchasmallerfrequency

band,givinga better fit.
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Chapter 4

Accelerometer and Gyro Failure

Detection

4.1 Introduction

In this chapter we discuss the sensor failure detection experiments conducted on some

accelerometers and gyros of the Mini-Mast. These experiments are similar in nature to

the experiments discussed in the previous chapter. Because we are using different types

of sensors, we will get the interesting case where sensors of mixed type are used to form

a double sensor parity relation. Three sensors are considered: two accelerometers that

measure linear acceleration in the global X and Y directions, and the Z-axis gyro. All the

sensors are at the tip of the mast. No state-space model was available for this set of sensors

so we present only identified relations.

Before we discuss the failure detection experiments we first look at the spectra of the mea-
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surements.In Figure4.1weshowthespectrumof the}<axisacceleration.Thetorquewheel
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Figure 4.1: Spectrum of the Y-axis acceleration. The torque wheel motors were

driven by discrete-time white noise that was passed through Iowpass filters with
20Hz bandwidth.

35

motors were driven by 20Hz bandlimited random signals. We see that the first torsional

mode is the dominant mode, with the first and second bending modes approximately 80 and

10 dB down respectively. We also see the effect of the local modes at 15 Hz and 19 Hz. The

peaks in the spectrum at approximately 9 Hz and 23 Hz are probably the result of aliasing:

the peak at 23Hz is caused by the fourth bending mode at 43.4Hz and the peak at 9Hz

comes from a mode at 74.8Hz. Similarly, there are modes at 91.THz and 93.2Hz that alias

to 25 Hz and 26.5 Hz respectively. In this experiment the sensor signals were filtered by third

order analog lowpass filters before they were sampled, but the filtering was not enough to
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preventaliasing.The bandwidthof the analogfilters was20Hz.

The solid line in Figure4.2 showsthe spectrumof the samemeasurement,but this time
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Figure 4.2: Spectrum of the Y-axis acceleration. The torque wheel motors were

driven by discrete-time random signals that were held constant for 4 sampling

periods. The dashed line shows the spectrum when the sampling period is 2Ts.
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35

the torque wheel motors were driven by random signals that were held constant for 4

sampling periods. The output was sampled at 1Ts intervals, which corresponds to a sampling

frequency of 66.67Hz. Again we see the peaks at approximately 9 and 23Hz. The dashed

line in this figure shows the spectrum when we sample the output of the Y-axis accelerometer

at 2T8 (33.33Hz). Here we clearly see how the local mode at 19Hz aliases to approximately

14 Hz, Although it was believed that the sensor outputs were filtered by 20 Hz analog filters

before they were sampled, it was found after the experiments were conducted that the analog
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filters were inadvertently set to have 100 Hz bandwidths, which is way above the sampling

frequency. Although most of the aliased components are 30 dB or more down. it was found

that the ambiguity caused by their presence degraded the performance of the Residual

Generators. So all measurements were digitally filtered with a fifth order elliptical filter

with 0.5dB passband ripple and stopband attenuation of 40dB: the equivalent continuous-

time cutoff frequency was 7 Hz. The passband of this filter was chosen to be wide enough to

pass the first five modes of the Mini-Mast and still give acceptable attenuation of the 9 Hz

aliased component. The spectrum of the Z-axis gyro signal is shown in Figure 4.3 where

-6O
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!i.........................
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v i

i , l i i
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Figure 4.3: Spectrum of the Z-axis gyro signal. The torque wheel motors were

driven by discrete-time random signals that were held constant for 4 sampling

periods.

we see that the first torsional mode is by far the dominant mode.
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4.2 Single Sensor Parity Relations

For this set of experiments the torque wheel motors were driven by random signals that

were held constant for 4Ts, while the sensor outputs were sampled at 1Ts intervals. A

block diagram of the experimental setup is shown in Figure 4.4. In the block diagram we

• MiniMast

Anti-alias

Filter
Y[_ ResidualGenerator

r

Postfilter rf

Figure 4.4: Experimental setup.

also show an additional filter at the output of the residual generator. In some experiments

we will show how additional filtering of the residuals can be used to improve the failure

signature. This filter will be called the postfilter and we will indicate when it is used. A

sixth order elliptical filter with 10 Hz bandwidth, 0.5 dB passband ripple and 60 dB stopband

attenuation will be used in all the cases.

Figure 4.5 shows the failure of the Y-axis accelerometer at sample number 245 and Figure 4.6

shows a failure of the Z-axis gyro at sample number 255. In both cases identified SSPRs

with 20 lags were used. Although both residuals indicate the corresponding failures, they

contain high frequency noise and clearly will not give reliable indications of failures. The

same residuals of Figures 4.5 and 4.6 are shown in Figures 4.7 and 4.8, but this time after

the residuals were filtered by the post filter. We see that lowpass filtering the residuals

definitely leads to improved failure signatures. Figures 4.9 and 4.10 show the same sensors
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with the same type of failures at approximately the same points in time, but this time

using a sampling period of 2Ts. These two figures must be compared with Figures 4.5 and

4.6 respectively. First we note that the residuals have respectively 5 and 7.5 times larger

amplitudes. Furthermore, the ratios of the amplitudes in the failed and unfailed states

have increased considerably. The postfilter has not been applied to these residuals: the

improvement comes only from the increased sampling period. It was found that filtering

these residuals with the post filter resulted in little improvement of the failure signature. In

the next section we look at double sensor parity relations.
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4.3 Double Sensor Parity Relations

Although the single sensor parity relations at 2Ts gave good performance there were failures

where the indications were only marginal. The next step is to look at double sensor parity

relations and hope that they will perform better. Figure 4.11 shows a failure of the X-axis

accelerometer at sample number 236 and Figure 4.12 shows a failure of the Z-axis gyro at

sample number 286. The number of lags used was (11,10), i.e., the parity relations had

the form rij as shown in Equation (2.37), and we use the notation (i,j) to indicate the

number of lags used. In both cases the unfiltered DSPR residuals are shown. We now

have the interesting case where sensors of mixed type are used to construct the parity

relations. The residual at the top of Figure 4.11 used the X-axis and Y-axis accelerometer

measurements to compute the residual, while the residual shown at the bottom of this

figure was computed from the X-axis accelerometer and Z-axis gyro measurements. A

comparison of these residuals with their 20 lag, 1Ts single sensor counterparts (Figures 4.5

and 4.6) shows that we get a significant improvement by using the double sensor parity

relations. It is again possible to clean up the signals with the post filter but we will not

show the results here.

An increase in the sampling period again leads to a significant improvement in the fail-

ure signatures as shown in Figures 4.13 and 4.14. Note that the output of the Residual

Generators are shown in these figures: no extra filtering was applied to the residuals. In

Figure 4.15 we have simulated the failure of an accelerometer that gives the correct output

when the acceleration is positive and zero when the acceleration is negative. This type of

failure can occur when a sensor is powered by a dual rail power supply and the negative

supply falls away. The residuals clearly indicate this type of failure.

Despite the good results that we have shown so far, the Generalized Parity Relations are
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still sensitive to certain parameter variations. In Figure 4.16 we show a failure of the Z-axis

gyro at sample number 250. The torque wheel motors were driven by lowpass filtered white

noise. The coefficients of the single sensor parity relation were identified on a different input-

output data set, but with the motors driven by a similar type of input signal. Figure 4.17

shows a failure of the same sensor at the same time, using the same data set. However,

the parity relation coefficients were identified on an input-output data set where the motors

were driven by random signals that were held constant for 4Ts. We see that the residual

gives no indication of the failure. Repeating this test on the accelerometers gave the same

result, i.e., no indication of failures. One possible explanation is that the torque wheel

motors have a significant amount of friction so that the amplitudes of the input signals

will determine how much the wheels are actually excited. The amplitudes of the lowpass

filtered input signals were approximately 7 times smaller than the amplitudes of the input

signals that were held constant. It is therefore difficult to conclude whether the difference

in performance is due to the different type of input signals that were used or due to the

different magnitudes of the input signals. Either case, it is a disturbing fact that the parity

relations show this sensitivity to the different input signals.
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4.4 Summary

In this chapter we have discussed the detection of accelerometer and gyro failures. It

was found that the wider bandwidth of the measured signals can lead to aliasing that in

turn degrades the performance of the residual generators. With proper anti-alias filters in

place, the double sensor parity relations give good failure signatures. The sampling period

again proved to be a very important parameter in the design of the Residual Generator.

Despite the good performance, the parity relations are still very sensitive to the type and/or

magnitude of the signals that are used to excite the system.

We also showed examples of parity relations that were constructed using different types of

sensors. In all the cases considered the double sensor parity relations gave clear indications

of all the different failure modes. It must be noted that this improved performance comes

with the burden of an increased computational load.

It must be noted that we have shown results using parity relations with 20 lags throughout

this chapter. It was found that, because this set of sensors have higher bandwidths than

the displacement sensors, lower order models simply did not give clear indications of the

failures.
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Chapter 5

Actuator Failure Detection

In this chapter we discuss the detection of actuator failures on the Mini-Mast. For the

experiments conducted here, the torque wheel motors were driven by lowpass filtered ran-

dora signMs. The bandwidths of these filters were 10Hz, and the baseline sampling period

of 0.015 seconds, i.e., 1Tswas used. The measurements were filtered by 20Hz third order

analog filters before they were sampled and digitized. We will present data only on results

where the Bay 18 displacement sensors were used to obtain measurements, as the results

obtained by using the accelerometers and gyro were similar in nature.

A failure was simulated while the experiment was conducted by disconnecting the com-

manded signal to a torque wheel motor. The model-based single actuator parity relation

for this failure is shown in Figure 5.1. The actual time of failure is not known but should

be approximately at sample number 500. In the figure we see that there is no indication

of the failure at all. The residual of the same failure is shown in Figure 5.2 but this time

an identified parity relation with 20 lags was used to detect the failure. Even though this

residual is significantly smaller than the model-based residual, no indication of the failure
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is visible.

The above experiment was repeated by using double actuator parity relations, and both 1Ts

and 2Ts sampling periods were used without any visible improvement. Single and double

actuator parity relations were also identified using the X and Y-axes accelerometers and

Z-axis gyro but they, too, were unable to detect the failure.

To gain more insight into the behavior of the actuator parity relations a computer simulation

was conducted. Bandlimited random input signals were generated and a failure of the Y-

torque wheel motor was simulated in the input data by zeroing the actual signal going to

the plant. The Y-torque wheel motor was zeroed between samples number 213 and 284.

The corresponding outputs were generated using the Mini-Mast state-space model given in

Appendix B. The SAPR residual r2 is shown if Figure 5.3.

This simulation was repeated, but this time noise was added to the measurements before

they were used by the Residual Generator. A block diagram of this is shown below.

noise

_ Mini-Mast _

ui

Residual ri

Generator

Actuator failure simulation.

The standard deviation of the noise that was added to the measurement was 1% of the

standard deviation of the measurement. The SAPR residual for this simulation is shown in

Figure 5.4. A comparison of the magnitudes of the residuals in Figures 5.3 and 5.4 shows
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I I

3_ 4_ 5_

Sample number

Figure 5.3: SAPR residual for Y-torque wheel failure. In this simulation the

torque wheel was 'n a failed state between samples 213 and 284.

that the single actuator parity relations are extremely sensitive to noisy measurements. This

sensitivity is also clearly visible when we lo0k at the contributions of the measurements, ru,

and control inputs, r_, to the residual r2 as shown in Figure 5.5. In these figures we see that

the noise in the measurement is amplified so much that it is orders of magnitude larger than

the contribution of the control signal r_. The extreme sensitivity to noise is easily explained

when we look at the transfer functions of the corresponding Residual Generator, shown in

Figure 5.6. In this figure we see that the transfer functions from the measurements y to

the residual r 2 have very large gains over a large portion of the frequency band, especially

at high frequencies, and therefore the smallest amount of noise in the measurements will

be amplified and bury the residual deep in it. The figure also shows that the gain of the

transfer function from the control signal u2 to the residual r2 is small compared to the gains
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,p,'i"ll,II"J"" ir'l I1
"200 100 200 300 400 500

Sample number

Figure 5.4: SAPR residual for Y-torque wheel failure with noisy measurements.

The standard deviation of the added noise is 1% of the standard deviation of

the measurement. The torque wheel was in a failed state between samples 213
and 284.

of the other transfer functions. Simulations with double actuator parity relations showed

similar sensitivity to noise and gave no improvement.
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To summarize,detectingactuatorfailureson the Mini-MastusingGeneralizedParity Re-

lationswaswithout any success.Themain reasonfor the poor performanceof the parity

relationsis the extremesensitivityto noise,a resultof the very high gainson thetransfer

functionsfrom themeasurementsto theresidual.Also,thesmallcontributionofthe control

signalto the residualmakesits absenceveryhard to detect.This sensitivityis inherentin

the formulationof actuatorparity relations.
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Chapter 6

Generalized Parity Relation

Experiments Using the ACES

Facility

6.1 Introduction

The ACES (Active Control EvMuation for Spacecraft) facility is at the Marshall Space Flight

Center in Huntsville, Alabama. It is a symmetrical beam, 13 m long, with a triangular cross

section. Three longerons extend the full length of the mast and form the corners of the

beam. There are 91 flexible batons in compression along the length of the boom connected

by diagonal members in tension. The mast has a twist of 260 degrees from base to tip. An

antenna is at the tip of the mast and a pointing gimbal at the base. A laser beam, fixed in

the lab, is reflected by two mirrors and its X - Y location is detected by an optical detector

mounted on the antenna. One mirror is mounted on the antenna and the other one on the
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pointing gimbal system or image motion compensator (IMC).

1 Base Excitation Table

2 Three-axes Base Accelerometers

3 Augmented Advanced Gimbal System

4 Three-axes Base Rate Gyros

5 Three-axesTip Rate Gyros

6 Three-axesTip Accelerometers

? OpticalDetector

8 Reflectors

9 Laser Light Path

i0 Two Gimbal System

11 LMED System

®

Astromas!

@

3 Meier Antenna

Figure 6.1: Schematic diagram of the ACES mast.

The mast is equipped with a variety of sensors and actuators and only the ones that are

applicable to this work will be mentioned. Three-axes rate gyros and accelerometers are

mounted at both the base and the tip of the mast. Two linear momentum exchange devices
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(LMED) are located 6.4 and 11.4 m from the base respectively. The LMEDs consist of a

proof mass actuator and collocated accelerometers. A high precision, three-axes, gimbal

system with torque motors is mounted to the base of the system.

6.2 Processing the residuals

In the following section and the next chapter we discuss various failure detection experiments

that require the comparison of the residual to a threshold. During the course of the work

it was found that the failure could often be seen in the residual by the human eye but no

significant increase in the magnitude was present so that it could be accurately detected

by a threshold detector. Simple lowpass filtering turned out to be inadequate to extract

the failure signature from the noise and it was found that simple nonlinear processing

greatly improved the failure signature. A block diagram of the processing system is shown

in Figure 6.2. The residual is first filtered with a lowpass filter with cut-off frequency of

Residual

Generator
Lowpass

Filter

rf
S

Moving
r2 Average

Filter

rp

Figure 6.2: Block diagram of post processing filter.

approximately 3 Hz. This cut-off frequency is based on the bandwidth of the system and

should be large enough to include the dominant modes. In a few cases, notably ACES

experiments, it was necessary to use a bandpass filter to remove some sensor biases. The

output of this lowpass filter is then squared and applied to a second lowpass filter with
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very low cut-off frequency,typically lessthan 0.05Hz. This low frequencyis necessary

to ensurethat the magnitudeof the failure signaturestayslargeduring periodsof small

measurements.Butterworth and Besselfilters wereinitially usedfor this low bandwidth

filter but numericalproblemsruled themout. A simplemovingaveragefilter wasfound

to work bestand wasusedfor all the experiments.The numberof lagsof this filter was

typically 200or more.

6.3 ACES Failure Experiments

The ACES failure detection experiments were conducted similar to the Mini-Mast experi-

ments. In order not to excite too many high frequency modes bandlimited inputs were used

on all the experiments. These input signals were generated by filtering random sequences

with bandpass filters. Like the Mini-Mast, it was found that a longer sampling period gives

better results. Because this was anticipated, the experiments were designed so that it would

be easy to use various sampling periods by holding the input signal constant for more than

one sampling period. Experiments were repeated by keeping the input signal constant for

1, 2, 4, and 8 sampling periods. The baseline sampling period for ACES is T_ = 20 ms. It

was found that increasing the sampling period more than 4Ts lead to little improvement

and the following results were all done at 4Ts. The bandwidths of the bandpass filters were

chosen so that the bandwidths of the resulting signals, taking the longer sampling period

into account, were 1 Hz.

Initial results on ACES were very poor and it was hard to detect sensor failures using low

order models. Only when models of order 60 and higher were used did failures show up in

the residuals. Though failures were visible in the residuals by the eye, the residuals were not

good enough to be used as reliable indicators of the failures. As explained in the previous
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section, nonlinear filtering greatly improved the situation and was used in all the ACES

experiments. The order of the parity relations presented here was 60.

All the parity relations used in these experiments were identified on one set of input-output

data and then applied to other sets to detect component failures. Two different methods

were used to identify the coefficients of the parity relations. The one approach was to use

the standard least squares technique as outlined in Section 3.3. See also Section 2.1. For

the second approach we used the ARX procedure in Matlab's System Identification Toolbox

[9]. This procedure performs robust identification by weighing small errors quadratically

and large errors linearly. The value at which the cost changes from quadratic to linear is

user definable and the default value was used. Detail about this method can be found in [7]

and [9]. Unless noted otherwise all parity relations were identified using the robust method.

For this facility there are many sensors and actuators to choose from and only a represen-

tative sample is showed here. The first SSPR was designed to detect failure of one of the

gyros at the base of the mast. Recall that the mast is hanging upside down so the base is

at the top and the tip at the bottom. The three base gimbal torque motors were used to

excite the mast. A failure of the gyro was simulated by zeroing the recorded output from

t = 60 seconds until the end of the experiment and the residual is shown in Figure 6.3. The

coefficients for this residual were identified using the least squares technique. A sudden in-

crease in the residual magnitude shows the failure and even after the transient has decayed

a large residual still shows the presence of the failure.

SSPRs were also identified for the LMED accelerometers. A typical failure of one of the

accelerometers is shown in Figure 6.4. The failure was introduced after 48 seconds. A clear

indication of the failure is given by the increase in magnitude of the residual.

Due to the initial difficulties experienced in detecting sensor failures, single sensor parity
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Figure 6.3: SSPR residual for base gyro. The failure was introduced at t = 60

seconds.
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Figure 6.4: SSPR residual for LMED accelerometer. The failure was introduced

at t = 48 seconds.
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relations were abandoned in favor of double sensor parity relations with the hope that the

additional measurement would give better results. With the nonlinear processing the SSPRs

were found to compare favorably with the DSPRs and thus may be a viable solution for

most sensors instead of the (numerically) more complex double sensor relations.

A double sensor parity relation was designed using a base and tip gyro with the base

torquers as actuators. The tip gyro was failed to zero after 50 seconds; the residual is

shown in Figure 6.5 where the increase in the magnitude of the residual clearly shows the

failure. Failing the base gyro at t = 40 seconds also results in a clear indication of the failure

as shown in Figure 6.6. Note that a set of three double sensor parity relations constructed

from three different sensors is needed to determine which one of the sensors actually failed.

Combining different types of sensors in a DSPP_ is always interesting so a gyro at the

base was combined with a tip accelerometer. A failure of the base gyro was introduced at

t = 60 seconds and the residual is shown in Figure 6.7. The scale of the plot was kept the

same as in Figure 6.6. Though the increase in magnitude is smaller than before the failure

is still visible. Failing the accelerometer at t = 45 seconds is also detected as shown in

Figure 6.8. Once the transient has decayed the magnitude of the residual is about the same

as it was before the failure, which is not desirable. Still, the transient lasted long enough

to be detected.

For the next DSPR we combined a tip gyro with an LMED accelerometer and failed the

tip gyro after 50 seconds. The failure signature shown in Figure 6.9. The failure signature

again gives a good initial indication of the failure yet it fails to keep the residual large

till the end. A failure of the LMED accelerometer could not be detected. Analysis of the

contributions of the individual sensors to the residual showed that the contribution from

the accelerometer was more than 4 times smaller than that of the gyro and was effectively
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Figure 6.5: DSPR residual for (base gyro, tip gyro) pair. The tip gyro failure

was introduced at t = 50 seconds.
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Figure 6.6: DSPR residual for (base gyro, tip gyro) pair. The base gyro failed

at t -- 40 seconds.
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Figure 6.7: DSPR residual for (base gyro, tip accelerorneter) pair. The base

gyro failed at t = 60 seconds.
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Figure 6.9: DSPR residual for (tip gyro, LMED accelerometer) pair. The tip
gyro failed at after 50 seconds.

masked by the noise. The transient seen in Figure 6.9 resulted from the transient that

occurred when the gyro was failed. Once this is zero the contribution from the other sensor

is so small that there is no sustained indication of the gyro failure. This also explains why

the gyro failure in Figure 6.7 resulted in a transient with no sustained indication of the

failure.

It was mentioned that different identification procedures were used to identify the coef-

ficients of the parity relations. We will now show how the choice of method affects the

quality of the residual. A DSPR was identified for the base gyro and tip accelerometer pair

that was showed in Figure 6.8. This time the standard least squares method was used and

the resulting failure is showed in Figure 6.10 where we see that the failure is not detected
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Figure 6.10: DSPR residual for (base gyro, tip accelerometer) pair. The ac-
celerometer failed at after 40 seconds.

by this DSPR. This behavior was not general and in same cases DSPR identified with the

standard least squares method resulted in better residuals!

Similar results were obtained when the LMEDs were used to excite the mast instead of the

base torquers. Experiments were also conducted where only the IMCs were used with the

hope that the direct link between the IMCs and detector will give good results. The large

quantization error of the detector made this the worst performer of the sensor-actuator

pairs tested. Combining the detector with any set of actuators always gave bad results and

detector failures could not be detected.

Both single and double actuator parity relations were identified from input-output data

but actuator failures could not be detected. In all the cases the individual contributions
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to the residualfrom thesensorsweremuchlargerthan the contributionfrom the actuator.

Typical resultsare shownin Figure6.11. An SAPRwasconstructedfor the X-gimbal

torquer using two tip gyros as sensors. The individual contributions are shown Figure 6.11.

In this experiment the X-gimbal torquer was disconnected between 60 and 100 seconds.

0.02 y 1 ->r 1 ,
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Figure 6.11: SAPR individual contributions for X-gimbal torquer using two tip

gyros as sensors. The torquer was disconnected between 60 and 100 seconds,

No indication of this failure is given by these signals. As we showed in Chapter 5 (see for

example Figure 5.6), the poor performance is a result of the extreme sensitivity of SAPR

Residual Generators to noise.
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6.4 Summary

Detecting sensor failures on the ACES facility proved to be difficult compared to the Mini-

Mast. The main reason for this is the high order models that are needed to construct

reliable parity relations. When models of order 60 and higher are used it is possible to

detect sensor failures with both single and double sensor parity relations. In all the cases

nonlinear processing of the residuals was needed to give reliable failure signatures.

For some double sensor parity relations the failure of one sensor would result in a transi-

tory indication only with the contribution of the second sensor effectively masked by the

noise. Currently no method exists to determine analytically which sensor pairs will give

"good" residuals. It was also shown that robust identification techniques can identify parity

relations that perform better than ones identified using standard least squares techniques.

Actuator failures proved to be hard to detect for this system and even high order models

did not detect failures. The main reason for this is the extreme sensitivity of actuator parity

relations to noise and the small contribution of the nominal actuator signal to the parity

relation residual.
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Chapter 7

Failure Detection Filters

7.1 Introduction

As stated in Chapter 1 there is a variety of methods available for the detection and identifi-

cation of control system component failures. In previous chapters we looked at generalized

parity relations; in this chapter we discuss a series of failure detection experiments that

were conducted on the Mini-Mast using the failure detection filter (FDF). First, we give a

brief description of failure detection filters.

The FDF is an observer of a linear dynamic system which indicates failures of some of the

components of the system by constraining the signature of the failures to unique directions

in the space of the measurement residuals. It was developed by Beard in 1971 [2]. Shortly

after that Jones [6] gave a geometric interpretation of the failure detection filter and more

recently White and Speyer [16] viewed it as an eigensystem assignment problem. A different

formulation of the failure detection filter was developed by Massoumnia [10]. We will give
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brief descriptionsof the Beardand Massoumniaformulationsand refer the readerto the

referencesfor moredetail.

Considerthe continuous-time,linear,time-invariantmodelgivenby

5_p(t) = Ap_p(t) + Bpua(t), (7.1)

y(t) = Cp_p(t) (7.2)

where Wp(t) E ]_n_ is the state vector, ua(t) E _n_ is the actual input vector driving the

system, y(t) E ]_n_ is the measurement vector, and Ap E _n_×n_ Sp E _nxxn_, and

Cp E _×nx are the usual continuous-time state-space matrices. The failure detection

filter is a linear time-invariant system driven by the commanded inputs u¢ and measured

outputs and is described by

£(t) = Afz(t) + Dy(t) + Blue(t), (7.3)

and the matrices Af E _nxxnx, Bf E R nx×n", and the detector gain D E _x×_Y must

be selected to produce the necessary information about the failure. This can be done by

constructing the error signal

e(t) = Wp(t) - z(t), (7.4)

which is just the difference between the system states and the filter states. Differentiating

this equation and using Equations (7.1)-(7.3) we get

_}(t) = (Ap - DCp)_p(t) - Afz(t) zr (Bpua(t) - Bfuc(t)). (7.5)

If the actual control signal driving the plant is the same as the commanded control signal

we see that by choosing

Af = Ap - DCp (7.6)

Bf = Bp, (7.7)
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weget the followingexpressionfor theerrordynamics

@(t)= (Ap - DCp)e(t). (7.8)

We also define the residual

r = Cpe(t). (7.9)

If we choose D so that all the poles of Ap - DCp are in the left half plane then the residual

will go to zero as time goes to infinity, that is, if everything in the system is in good health

the steady-state residual will be zero.

Consider now a failure of the jth actuator modelled by

u_(t) = uc(t) + ijn(t) (7.1o)

where ij is the jth column of the identity matrix and n(t) is an arbitrary unknown function

of time. Substituting Equation (7.10) into Equation (7.5) and using the choices for Af and

Bf given in Equations (7.6) and (7.7) we get the following expression for the error dynamics

@(t) = (Ap - DCp)e(t) + bin(t) (7.11)

where bj is the jth column of Bp. From this equation we see the error is now driven by the

signal n(t) so that the error, and therefore the residual, is nonzero in general. Beard has

shown that it is possible to find a detector gain D so that the steady-state residual maintains

a fixed direction, determined by Cp and bj, in the output space and the eigenvalues of

Ap - DCp can be assigned almost arbitrarily. There are also other important concepts

related to the design of the filter, e.g., it is possible to design a filter that will detect the

failure of more than one actuator in which case it is important to determine whether a

group of failures is output separable and mutually detectable. It is also possible to design a

filter that will detect sensor failures in which case the residual is confined to a plane in the

output space. We will not discuss the detail here and the reader is referred to Beard [2]. The
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important point is that it is possible to detect the presence of a failed component as well

as identify which one actually failed. This can be done, in principle, for arbitrary functions

n(t) which means arbitrary modes of failure.

A variation of the failure detection filter was proposed by Massoumnia [10]. To illustrate

the method, assume we have a system with two inputs and we would like to design a filter

that is sensitive to a failure of the first actuator but not of the second. The system and

failure are modelled by

• p(t) = Ap_p(t) + Bpu(t) + _lml(t) -_-_2/rt2(t)

y(t) = Cp_p(t)

and the filter and residual are given by

(7.12)

(7.13)

w(t) = Afw(t) - Bfyy(t) + Bfuu(t) (7.14)

r(t) = Cfw(t) - Dfyy(t) (7.15)

where Af E ]_nxxnx, Bfy E _nxXny Bfu E _nxxnu, Cf _ _nrXnx, and Dry E R nrxny, and nT

is the dimension of the residual. In this model the term llml(t) represents the component

whose failure we would like to detect with this filter. This term is analogous to the way we

simulated the actuator failure for the Beard filter -- when the actuator is fully operational

ml (t) is zero and when a failure is present ml (t) is an arbitrary function of time. The term

12m2(t) models the failure of the other actuator that should not influence the residual of

this filter. The functions ml(t) and m2(t) are called failure modes. The idea is to find the

filter parameters Af, Bfy, Bfu, Cf, and Dry so that the residual is nonzero when ml(t) is

nonzero and zero when ml(t) is zero, independent of m2(t). Expressed in a different way,

we would like the transfer function from m2(t) to r(t) to be zero and rnl(t) should be input

observable. The Massoumnia filter is more general than we have presented it here and can
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handlesystemswith anynumberof inputs. Also, the vectors11 and 12 in Equation (7.12)

can in general be matrices L] and L 2 so that it is possible to design a filter that will detect a

set of failures while not being influenced by another set of failures. The general description

for the system thus is

5_p(t) = Ap_p(t) + Bpu(t) + Llml(t) + L2m2(t). (7.16)

There is also some fl'eedom in the selection of the filter parameters and Massoumnia has

shown how this can be used to whiten the residuals in the absence of failures. The conditions

under which this problem can be solved can be found in [10].

The failure detection filter formulated by Massoumnia can also be used to detect sensor

failures. Here we model the plant and sensor failures by

5_p(t) = Apap(t) + Bpu(t) (7.17)

y(t) = Cpap(t) + Jlnl(t) + J2n2(t) (7.18)

where we would like to detect sensor failures modelled by the term Jlnl(t) but not those

modelled by the term J2n2(t). To design a filter that will detect a failure of the jth sensor

but not respond to failures in any of the other sensors we choose J1 = ij where ij is the

jth column of the identity matrix and J2 is all but the jth column of the identity matrix.

We will model the signals n_(t) and n2(t) by the following systems

5_nl(t) = Al_nl(t) d- Blml(t) (7.19)

nl(t) -- Clam(t) (7.20)

_.2(t) = A2a._(t) + B2m2(t) (7.21)

n2tt) = C2_n2(t). (7.22)
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Wecannowform the augmentedsystem

/ _p(t) /
_nl(t)

=n2(t)

Ap 0 0

0 AI 0

0 0 A2

=p(t)

_nl(t)

_n2(t)

Bp

+ 0

0

B1 ml ( t ) -{-

0

0

B2

_(t)+

m2(t) (7.23)

A
-- Ax(t) + Bu(t) + Llml(t) -_-L2rn2(t) (7.24)

y(t) = [Cp JiC1 J2C2 ]_(t), (7.25)

which is in the form of Equation (7.16). So we can use the same techniques as before to

solve the sensor failure detection problem.

7.2 Actuator Failure Experiments

In this section we discuss failure detection experiments on the Mini-Mast where the failure

detection filter was used. The Massoumnia filter was used in all the experiments. The

main reason for this choice was the availability of numerically reliable software to compute

the filter parameters. Although the Beard filter has the advantage that the filter can be

designed to detect and isolate more than one failure the algorithm given to compute the

detector gain D in Equation (7.3) gives numericM problems when applied to high order

systems.

A twelfth order state-space model was identified from the recorded input-output data using
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the method of [15]. In all the experiments the baseline sampling frequency was used so that

the sampling period was Ts = 15 ms. Recall that for parity relations this short sampling

period did not give good results for sensor failures, and no actuator failures could be de-

tected. The sensors used were the three displacement sensors at the top of the mast, and

the actuators were the three torque wheels mounted at the top of the mast.

Three failure detection filters were designed with whitening of the residuals. As an example

for the first actuator, the system was modelled by

5_p(t) = Ap_p(t) + Bpu(t) + blml(t) + [b2, b3]m2(t), (7.26)

where Bp = [bl, b2, b3] so that the corresponding residual r_ will detect failures of the first

actuator only. The second filter was designed to detect failures of the second actuator only

and the system was modelled by

5_p(t) = Ap_p(t) + Bpu(t) + b2ml(t) + [bl, b3]m_(t) (7.27)

with corresponding residual r2. The third actuator is treated in a similar way. The recorded

input-output data was then used as inputs to the failure detection filters. Unless stated

otherwise, the residuals were processed as shown in Figure 7.1 and outlined in Section 6.2.

Residual

Generator
Lowpass

Filter

rf
S

s Moving
Average

Filter

rp

Figure 7.1: Block diagram of post processing filter.

In Figure 7.2 we show the residual when the X-torque wheel was disconnected at approxi-
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mately 30 seconds and reconnected approximately 30 seconds later. The residual shown was

taken off just after the first lowpass filter and before the nonlinear element, see Figure 6.2.

An increase in the magnitude of the residual clearly shows the failure of the actuator. The

residuals for the ]I- and Z-torque wheels were not affected by this failure. Figure 7.3 shows

the residual at the output of the moving average filter and it is clear from the large mag-

nitude of this signal that we can detect the failure with a threshold detector. The residual

for a failure of the Y-torque wheel is shown in Figure 7.4 where the residual was taken at

the output of the moving average filter; the increase in the magnitude clearly shows the

malfunctioning of the actuator. Again, the other residuals were not affected by the failure.

The Z-torque wheel was also disconnected in another experiment and we show the resid-

ual, taken directly from the output of the FDF, in Figure 7.5 where again we have a good

indication of the failure. Note that no additional filtering or processing was performed on

this residual and lowpass filtering would be enough to give an excellent indication of this

failure.

Because these actuator failures were nol simulated by corrupting the recorded input-output

data they are significant indicators that actuator failures can be detected for large flexible

structures.

In Chapter 5 we mentioned that actuator parity relations fared poorly on the Mini-Mast.

Since those experiments were performed we started using the post processing filter that

greatly improved the ability to extract the failure signature from the noise. To make a fair

comparison between the FDF and SAPR, a 12-lag SAPR has been identified and applied

to the same input-output data; the residual was processed in the same way as we did for

the FDF. Figure 7.6 shows the resulting failure signature -- this figure should be compared

with Figure 7.4. The SAPR simply fails to give any indication of the failure. One reason

for the big difference in performance of the two methods is found by comparing the transfer

117



1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.!

0
0

10-7o

J

i I I

I0 20 30

/il
[

........

• i •

.

I 0 i I I I050 6O 70 8

Time [seconds]

Figure 7.4: FDF residual r_2 for Y-torque wheel failure. The failure existed

approximately between t = 30 and t = 60 seconds.
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Figure 7.5: FDF residual r3 for Z-torque wheel failure. The failure existed

approximately between l = 30 and t = 60 seconds.
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Figure 7.6: SAPR residual rp2 for Y-torque wheel failure. The failure existed

approximately between t = 30 and t = 60 seconds.

functions of the two residual generators. Figures 7.7 and 7.8 show the transfer functions

from the measurements Yl - y3 and input u2 to the residual r2 of the SAPR and FDF

residual generators respectively. From the first of these figures we see the gains on the

measurements of the SAPR residual generator increase with increasing frequency and thus

will amplify high frequency noises that are present in the measurements. The corresponding

gains of the FDF increase only slightly over the same frequency range and stay more or

less constant at high frequencies. In Figure 7.8 we also show the transfer function from the

failure mode ml (t) to the residual r2(t) and see that the FDF puts a little more emphasis

on frequencies at 0.9 Hz, which corresponds to the first bending mode. In the next section

we present the results on sensor failures using the FDF.
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7.3 Sensor Failure Experiments

Three FDFs were designed to detect failures of the three displacement sensors located at the

tip of the Mini-Mast. Sensor failures were simulated in the recorded input-output data by

corrupting the measurements. In all the experiments presented in this section the baseline

sampling period of 15 ms was used and the sensors were failed to zero at t=15 seconds.

Figure 7.9 shows the residual directly at the output of the detection filter, i.e., with no

4
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Figure 7.9: FDF residual rl for Sensor D1 failure.

additional processing, when Sensor D1 has failed. The failure mode mz(t) was modelled by

a first order system with a pole at s = -2zr5 rad/s. The processed residual also gave a clear

indication of the failure and is not shown. None of the other residuals were affected by the

failure of this sensor. Failures simulated for the other sensors also showed up clearly in the

unprocessed residual and the results are not shown.
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A secondset of detectionfilters weredesignedto detectsensorfailuresbut this time the

dynamicsof the failure modeswereeachmodelledby secondorder systemswith natural

frequenciesofa3,_= 4.4Hzanddampingcoefficientsof _ = 0.2.Thenaturalfrequency,which

waschosento beappro_mately10%fasterthan the frequencyof thefirst torsionalmode,

wasselectedbasedon the strongdominanceof this frequencyin all themeasurements.The

resultingresidualfor afailureof SensorD1 is shownin Figure7.10.Whenwecomparethis
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Figure 7.10: FDF residual rl for Sensor D1 failure. A second order model was

used for the failure modes.

figure with Figure 7.9 we see that the slightly more complex model used for the dynamics

of the failure mode resulted in a residual that gives a better indication of the failure. Note

that no additional processing was done: this is the residual as computed by the FDF.

Motivated by the improvement in results obtained by modelling the dynamics of the failure

mode with a second order system, the same idea was applied to the actuator failure detection
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filter. That is, the failure modewasexplicitly modelledby augmentingthe modelof the

plant with thedynamicsof thefailuremode.Usingthesamevaluesfor thenaturalfrequency

and dampingcoefficientwe repeatedsomeof the experiments;the residualcorresponding

to a failure of the Y-torque wheel motor is shown in Figure 7.11. Figure 7.12 shows the

unprocessed residual corresponding to Figure 7.4. This residual was generated with the

standard actuator FDF, i.e., the failure mode was not modelled explicitly. Comparing

Figures 7.11 and 7.12 we see that modelling the failure mode led to a residual that gives

a better indication of the failure and only simple lowpass filtering is needed to extract the

failure signature. The added complexity thus appears to be advantageous and further work

is necessary to determine how useful this approach is. Also, it is necessary to determine

whether this modelling will impair the filter's ability to detect any failure mode.

ACES

Several attempts were made to design failure detection filters for ACES. The FDF requires

a state-space description of the system and as we have seen for ACES high order models

are needed to detect component failures. Identifying such a model is not a trivial task and

was beyond the scope of this work. A twelfth order model was tried without success.

7.4 Computational Burden

In this section we give a comparison of the approximate number of operations that is neces-

sary to implement generalized parity relations and failure detection filters. The computation

of
n

a, xi (7.28)
i----1

requires n multiplications and n-1 additions. However, because the time to do an addition

is usually much shorter than the time to do a multiplication, we will assume that n mul-
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Figure 7.11: Unprocessed FDF residual r2 for Y-torque wheel failure. The failure

mode was modelled by a second order system.
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Figure 7.12: Unprocessed FDF residual v2 for Y-torque wheel failure.
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tiplications and additionsareneededto computethe sum. Thus, callinga multiplication

and addition anoperation,n operations are needed to compute the given sum. Addition

of two scalar quantities is ignored. Sums like the one given in Equation (7.28) occur in

difference equations, e.g., parity relations, as well as in matrix-vector multiplications, e.g.,

the detection filter.

We consider residual generators designed to detect the failure of a single component. A

general description for a single sensor parity relation using nx lags is

nu nx nx

= y(t) + F_,Zj,suj(t- +  sy(t - (7.29)
j=l s=l 8=1

and the number of operations necessary to implement this is approximately

nsspr = nx(nu + 1). (7.30)

For a single actuator parity relation the roles of sensors and actuators are interchanged so

that

ns_,pr = nx(ny + 1). (7.31)

The general description for the failure detection filter is given by Equations (7.14) and

(7.15), and straight forward implementation of this requires

nf_ = n(n + ny + n_ + 1) + ny (7.32)

operations for a one dimensional residual, where n is the dimension of Af. The filter is often

of dimension less than n_ because the part of the dynamics that is unobservable from the

residual is automatically factored out during the design of the filter. For a filter designed

to detect sensor failures, the dynamics of the failure modes that must be ignored by the

filter also gets factored out. In many cases complete columns of Sfy, Dfy, and Bfu are zero

because the failure detection filter ignores certain measurements and inputs. As an example,
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for the Mini-Mast sensorfilters, only the columnsof Bfy and Dry that correspond to the

specific sensor the filter was designed for had nonzero entries. Furthermore, the number

of operations can be decreased by diagonalizing the resulting A-matrix; if this is done and

assuming all poles are complex, only

nfaf-diag = n(ny + n_ + 3) + ny (7.33)

operations are needed. It is also possible to implement the filter as a difference equation

similar to that of a parity relation; in this case the factor 3 in the last expression changes

to 1. The number of operations for the failure detection filter is more than that of the

parity relations by approximately n(ny + 3) + ny, where n is of the same order as the

dimension of the plant. The factor nny comes from computing the term Bfyy and, as we

noted earlier, often only one column of Bfy is nonzero so that the filter has approximately

3n more operations than the parity relation. This is a small price to pay for the increase in

performance.

7.5 Summary

In this chapter we conducted several failure detection experiments using the failure detection

filter. With some additional processing of the residual we showed that it is possible to get

good indications of actuator failures on the Mini-Mast. Comparison of the transfer functions

of the two residual generators also showed that the failure detection filter is less sensitive

to noise. The actuator failures that were detected can be regarded as a good measure of

the failure detection filter's ability to detect actuator failures as these were not simulated

failures. Compared to single actuator parity relations the failure detection filter is the clear

winner.
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In the caseof sensorfailuresthefailuredetectionfilter againperformedbetter than single

sensorparity relations.In previouschapterswehaveshownseveraltimesthat generalized

parity relationsprefera longersamplingperiodandoftenperformedpoorly at thebaseline

samplingperiodof theMini-Mast.Thefailuredetectionfilter wastestedonlyat thebaseline

samplingperiodand it performedwell for both actuatorandsensorfailures. This canbe

of greatimportancein applicationswherethe controlsystemrequiresfast sampling.
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Chapter 8

Conclusion

Space based stations put strict requirements on the reliability of the control system compo-

nents. Because these systems will be used for long unattended periods of time the control

system must be tolerant to the failure of its actuators and sensors. The reliability of the sys-

tem can be increased through hardware redundancy, but this leads to increased weight and

can be impractical when many components are used by the control system. The reliability

of the system can also be increased with analytical redundancy that uses the redundancy

that is present in the dynamics of the plant and the input-output histories.

Ideally one would require that a failure detection and isolation system be independent of

the mode of failure and it should also be applicable to both sensors and actuators. Two

methodologies satisfy these requirements: the Failure Detection Filter and the method

of Generalized Parity Relations. In this work we discussed the application of these two

methods experimental flexible space structures, the NASA Langley Mini-Mast and the

Marshall Space Flight Center ACES mast. Different sensor sets were considered and the

detection of actuator failures was also investigated.
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The performance of a reduced order model for the Mini-Mast that included the first five

modes of the plant (referred to as model-based relations) was compared to a set of parity

relations that was identified directly from input-output data (referred to as the identified

relations). The effect of the model order and sampling period on the performance of the

Residual Generator were also shown.

For the Mini-Mast, The first set of sensors consisted of the three displacement sensors at

the tip of the mast. These sensors measured the displacement of the tip relative to a fixed,

rigid structure that was built around it. The model-based residuMs suffered from sensitivity

to noise and did not give reliable indications of the failures. The identified relations gave

good failure signatures on all the different failure modes that were simulated in the data.

Because all analytical redundancy techniques use a model of the plant, they all suffer from

mismatches between the model and the real plant. By identifying the coefficients of the

parity relations directly from input-output data the need for an accurate state-space model

of the plant disappears. Identifying the parity relations has the advantage that it is easy

to increase the model of the order if the low order models that are typically used by the

control system give unacceptable performance. Using double sensor parity relations led

to no improvement for the model-based relations, while the identified relations showed a

significant improvement in the failure signature. It was also illustrated that the sampling

period had a significant effect on the performance of the Residual Generators; it was found

that the longer sampling periods gave better failure signatures. The reason for this improved

performance comes from the smaller frequency band that needs to be matched by a model

with a given order.

The second sensor set for the Mini-Mast consisted of two accelerometers and a gyro, all

mounted at the tip of the mast. A state-space model was not available for this set of

sensors so all the results apply to identified relations. Because of the wider bandwidths
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of thesesensorsit wasfound that wehad to increasethe orderof the model to get good

performancefrom the ResidualGenerators.The singlesensorparity relationsperformed

satisfactorilyand the doublesensorparity relationsgavegoodfailure signatures.Again,

increasingthesamplingperiodresultedin asignificantimprovementof thefailuresignatures.

This combinationof sensorsalsoillustratedthat it is possibleto usesensorsof mixedtype

to constructparity relations.

A setof parity relationsthat wasidentifiedwhenthe Mini-Mastwasexcitedbybandlimited

signalsperformedpoorly whenappliedto datathat wasrecordedwhenthe mastwasdriven

by widebandsignals.Themagnitudesof the input signalsdifferedconsiderablysothat the

poor performanceis probablycausedby the nonlinearitiesof the torquewheelactuators.

The detectionof Mini-Mast actuatorfailuresusingGeneralizedParity Relationsprovedto

beverydifficult. It wasfoundthat theResidualGeneratorshadvery largegainsassociated

with the transfer functionsfrom the measurementsto the residual,making it extremely

sensitiveto noisein themeasurements.Thisresultedin residualsthat weresonoisythat it

completelyobscuredthe contributionof the controlinput.

IdentifiedGeneralizedParity Relationswerealsousedto monitorcomponentfailureson the

ACESmast. Both singlesensorand doublesensorparity relationsneeded60or morelags

to giveacceptableperformance.Nonlinearprocessingof the residualsimprovedthefailure

signaturessignificantly.In someof the doublesensorparity relationexperimentsthefailure

of only oneof the sensorscouldbedetectedbecausethe contributionto the residualof the

othersensoris very small and thusmaskedby the noise. We havealsoshowedthat the

methodusedto identify the coefficientsof the parity relationcanhavea significanteffect

on the performanceof the parity relation.

The failure detectionfilter performedvery well for both sensorand actuator failureson
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the Mini-Mast. Some of the residuals for sensor failures were so good that no additional

processing was necessary. While generalized parity relations failed to detect actuator failures

on the Mini-Mast the failure detection filter detected all the failures. Furthermore, it was

found that the failure detection filter worked very well with short sampling periods.

The work concluded with an approximate analysis of the computational burden for the two

residual generators. The number of operations for the failure detection filter is more than

that of the generalized parity relation by a linear term.

Future Work

Though FDI has been studied for many years, several problems remain unsolved. A brief

summary of some problems that need further investigation is given here. It was pointed

out that an increase in the sampling period led to improved failure signatures. Although

no examples were given it was found that increasing the sampling period beyond a certain

point yielded no improvement. It thus appears that there might be an optimum sampling

period. Even if we can find such an optimal sampling period analytically, it may not be an

acceptable sampling period for use by the controller. It is easy to derive parity relations

when the sampling period used by the Residual Generator is an integer multiple of the

sampling period used by the controller. However, the analysis of the system is complicated

because the resulting Residual Generator is not time invariant any more. Because of the

large improvement that can be realized by the selection of a good sampling period it is an

area that warrants further investigation.

It was pointed out at the end of Section 2.2 that the construction of double sensor parity

relations leads to a choice of two relations. An example of this was given in Section 3.6

where we saw that the use of the second relation gave better failure signatures. We have

also showed that in some cases a double sensor parity relation fails to indicate the failure
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of oneof the sensorsit wasdesignedfor. Analysisof doublesensorparity relationsmay

leadto additionalinsight to why this happenedandmaybehint at whichrelationsshould

beusedfor bestresults.

Whendoingmodelvalidationthe residualis studiedin greatdetail asthis signalcontains

a wealthof informationaboutthe identifiedmodel. Thusweseethat modelvalidationis

similar in natureto failuredetection.Robustidentificationtechniquesareconstantlybeing

developed.Becauseanalyticalredundancymethodologiesall rely on a modelof the plant

robustnessis Mwaysanissue.The applicabilityof theserobustidentificationtechniquesto

failuredetectionmustthereforebeinvestigated.
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Appendix A

Second order system analysis

In this appendix we will find the discrete-time description of a continuous-time second order

system. Let the continuous-time system be

2

wn u(s), (A.1)

where wn is the natural frequency and _ < 1 the damping ratio. A continuous-time state-

space description is (see Chen [3], chapter 6)

( 2/(2/0 --_n _n

_(t) = _(t)+ _(t),
1 -2_Wn 0

(A.2)

y(t) = [0 1]_c(t) (A.3)

= _'_(t). (A.4)

The discrete-time state-space description is given by Equations (2.8) - (2.11).

damped natural frequency be denoted by

Y

Let the

(A.5)
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Evaluatingthe equationsfor A and B we get

A
all a12

a21 a22

(A.6)

e_<_,_T_ (cos(wdTs) + _ sin(wdT_)

t _in(_T_) 2 )-w_ sin(w-T

Wd _ _J , (A.7)

¢os(_T_)- _ _i_(_T_)

and

B  11)
b21

(A.8)

(2¢_ - -_oT_ f_- , _, , _(2C: - z)_in(_'_)5

\

l --e-_"_"T_(c°s(wdT_)+ (S_l(_d(T_)) ) . (A.9)

The numerator and denominator polynomials are found by evaluating Equation (2.68)

y(z) = c'(zI- A)-lbu(z)

n(Z)u(z)
d(z)

b21z -1 + (a21b11 - anb21)z -2

1 - (an q- a22)z -1 q- (alia22 -- a12a21)z -2"

(A.10)

(A.11)

(A.12)
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Appendix B

Mini-Mast state-space model

The continuous-time state-space model of the Mini-Mast is given by

_(t)

AI C)

© As

_(t) +

B1

B5

_(t)

where

n I :-

0-28.920733

1

-0.347406

(B.1)

(B.2)

n 2

0-28.839048

1

-0.228771

(B.3)

n 3 --_

/

/ o
-729.718377

\

1

-3.873707

(B.4)
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n 4 _-

0 1

1477.941136 -1.829934

(_.5)

A5 _-

0 1

-1501.392005 -0.774956

(B.6)

B 1 _-

0 0 00 -0.006166 0

(B.7)

B 2 _-

0 0 0-0.004122 0 0

(B.8)

S 3

0 0 0

0 0 0.194500

(B.9)

B 4

0 0 0-0.002723 -0.002723 0

(B.10)

S 5 _-_

0 0 00.002549 -0.002549 0 ,

(B.11)
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"/

The output matrix for the set of displacement sensors at the tip of the mast is

C

4.846400 0 -5.821079 0 4.846400 0 0.544624 0 1.069679 0

-0.798394 0 5.784700 0 4.911925 0 -1.740127 0 -11302644 0

-3.724298 0 -0.288348 0 4.633496 0 -1.597996 0 -0.142804 0

(B.12)

The D matrix is

D _--_-0. (B.13)
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